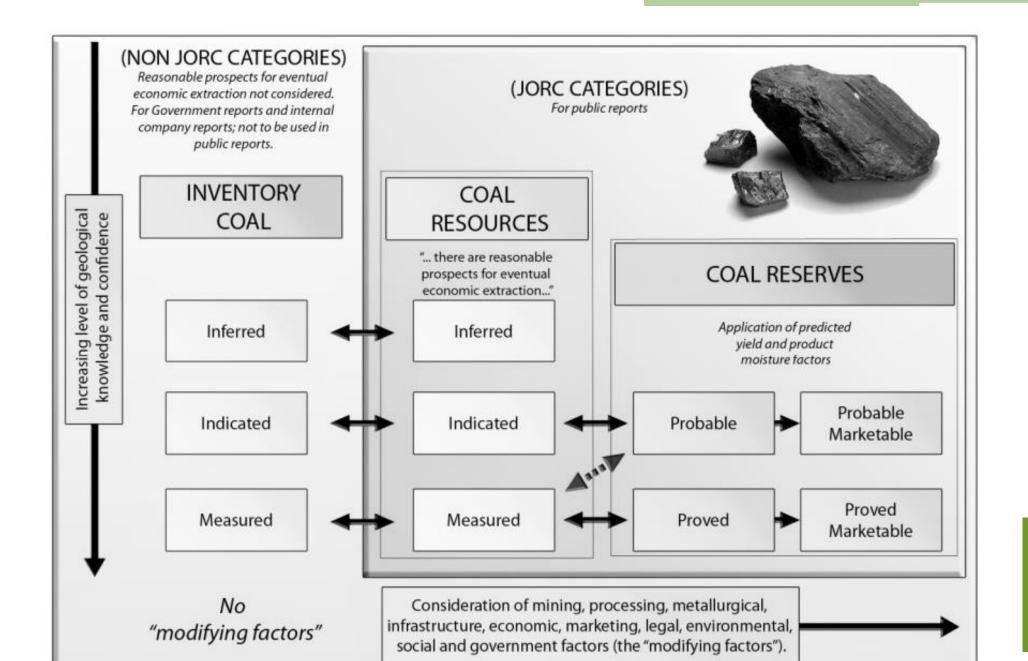
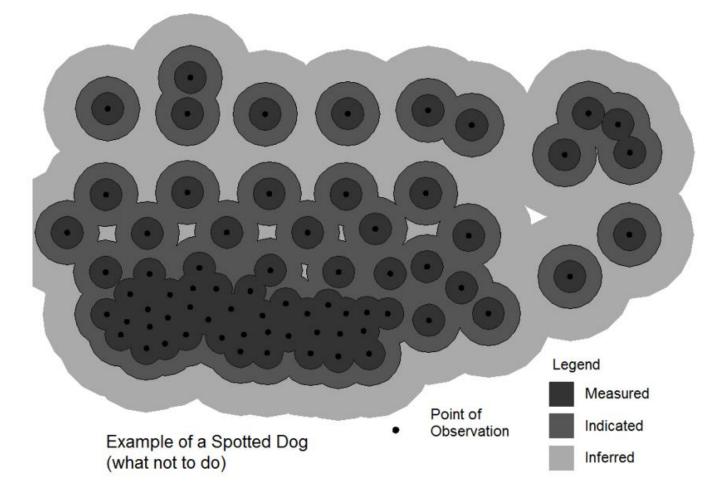
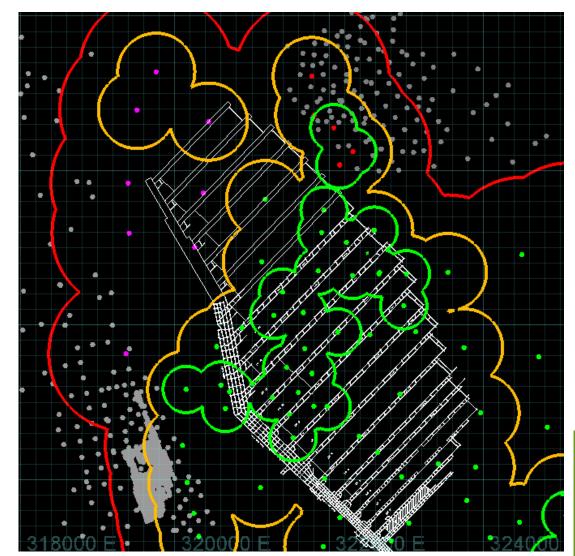

The Australian JORC Code from a Coal Mining Perspective


Presented by Daniel Saunders

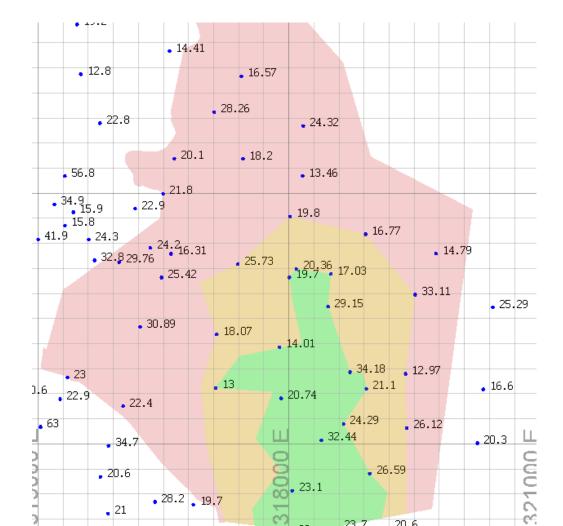
Introduction

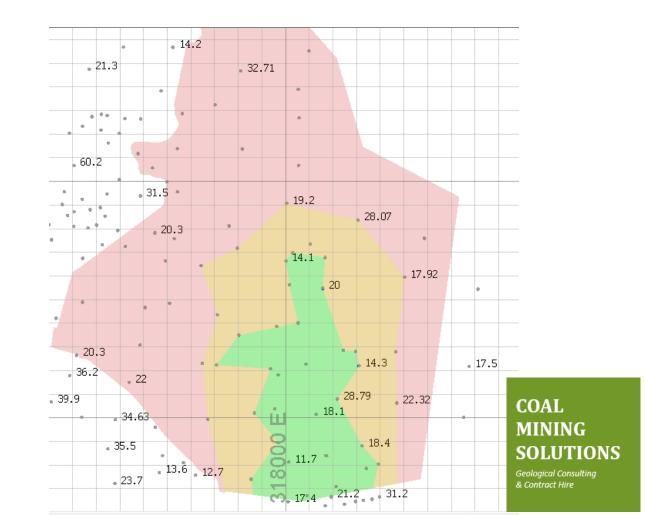

Overview

- Table 1 of the JORC code
- Measured, indicated and inferred resources
- Transparency and auditability
- Preston Sanders equation
- Reconciliation/s process/s and modelling techniques
- A overview of the methodology used in Australian coal mines with respect to JORC
- Daniel Saunders has 12 years reporting and is a member of the AusIMM

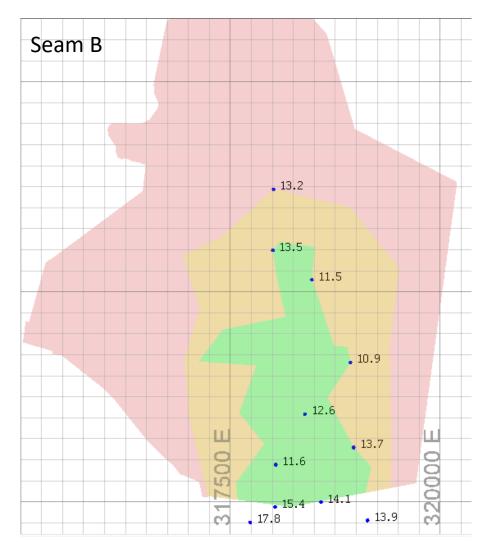


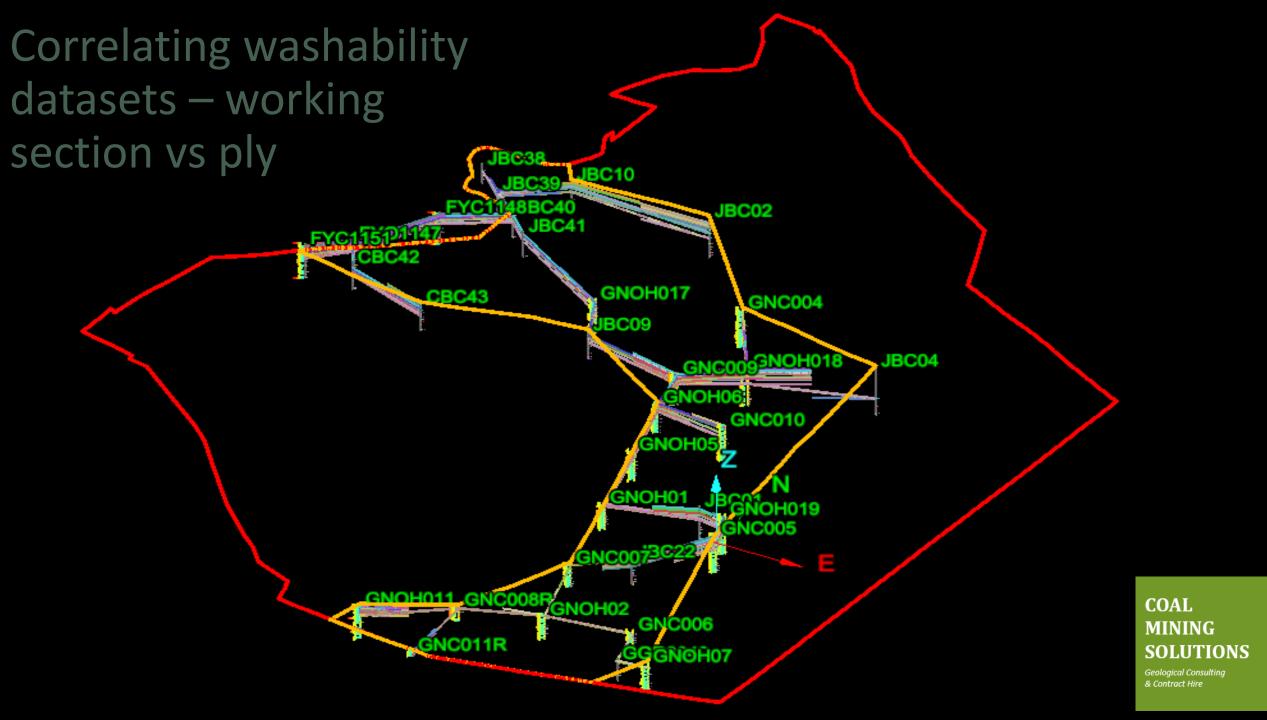
Sampling Techniques




Sampling Techniques

- Sample size for pretreatment
- Crushed datasets
- Working section vs ply
- Regressions


Seam A & B raw ASH sampled in working section and ply = 5-20% variance across lease



Product ash for our reserve reporting

Table 1 Section 1 Sampling Techniques and Data

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain Im samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Coal sampling strategies tended to change with each coring program at Glendell North, resulting in a mixture of ply and working section samples and a limited combined database with which to model variations across the lease. Drilling programs since 2001 - 2012 sample using ply boundaries from geophysical logs and analysis is carried out on working section composite samples. Since 1996 most Boreholes have been geophysically logged and more recently acoustic scanners have been ran and used for geotechnical design by interpreting bedding, joint and structura orientation. None of the NQ holes were geophysically logged at the time of drilling, although 10 holes were cleaned out and geophysically logged in 1996. Wireline logging companies have as standard procedures a calibration process for downhole sondes, which takes place on a regular basis. The NQ core holes (pre 1981) were analysed mainly as individu ply samples, giving a good coverage of raw coal analysis (proximate analysis, TS, CSN) across the lease area. The washability data for these holes was limited to F1.45 and F1.60 analysis, with no pre-treatment of samples – this data has been used in estimation of yield and product ash across the Mt Over Complex due to the current market and the drive for yield over coal quality. Crushed datasets are accurate in the higher cut points. Samples from large diameter holes drilled in 1996 were subjected to pre-treatment procedures and detailed washability and together with the 2001 HQ holes, form the basis of the coal washability database for the Glendell area which Glendell North shares the same seams for estimation of plant yield. Samples from HQ holes drilled in 1996 were analysed for a limited series of washability tests F1.45 and F1.60. They possess good quality detailed clean coal analysis on the 2 washed fractions. These

COAL MINING SOLUTIONS Geological Consulting & Contract Hire

		holes are located in the south of the resource blocks. Samples from HQ holes drilled since 2001 undergo detail sizing and pre- treatment procedures before washability testing. Raw coal quality data from NQ/JBC series holes was collected from hard copies sheets and entered into a coal quality database in Excel and is loaded in to Vulcan for modelling. More recent quality data was extracted from digital laboratory reports in Excel files. All quality data is stored in multiple tables compiled and validated by coal quality consultants A & B Mylec. Within these tables colour coded values indicate regressions have been used to derive that value. These relationships exist with high R- Squared values and are also scrutinised for outliers and errors.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	A series of partially NQ cored holes (JBC Series) was drilled vertically prior to 1981 at -800m spacing's and sampled for raw and product qualities, however no geophysics or photos to validate depths/recovery and only targeted deeper thicker seams. A series of both core and noncore HQ (FY series) have been drilled vertically up to 2006 for the Liddell open cut as it mined south with older Foybrook boreholes in the north eastern extents. This series has geophysics in more recent drilling and a combination of raw, product and geotechnical sampling. A 2 nd series of fully cored and noncore HQ holes were drilled vertically in 2011-12 (GN series) as a prefeasibility for the Glendell North project. Coal quality for raw and product were taken on a ply level. Geotechnical Samples at various intervals. Chip samples for lithological logging were taken from the air drilling. A 3 nd series or the continuation of the GN series is underway now in 2017. TG, N, GG, DW, S, SB, RE, LC, SP, ESC, UV, D, series reside within the lease extents and in the geological model to help the interpolation process and give horizon/edge control. They let the modeller reflect the geology using Vulcan quite accurately and do not influence or are significant in classifying the current target area. Therefore not discussed in detail in this report.

Orill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and coal quality and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Sample recovery for the NQ series of holes was sometimes poor and often poorly recorded. More recent HQ holes had core recovery measured in the HQTT inner splits at the drill site and compared at that time to drillers core drilled length. Thickness of coal recovered was also checked against downhole geophysics (density log) for final verification. Predictions of seam depth are created prior to drilling to try and maximise core recovery by knowing the sequence. Contractual obligation and industry standards of 95% recovery is the general rule otherwise the hole is redrilled. Bright coals have a poorer recovery than dull coal due to the cleat, brittleness and the inherent vitrinite percentage, this biases some results by over weighting the sample by the higher ash proportion forecasting higher than actual ashes. During mining at Glendell (7 years -~4.5Mt pa) there has only been one sample from one seam that has caused any material issues which were insignificant for LOM. Recovery of 70% was modelled and didn't accurately represent actuals.
ogging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Coal Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Most holes are lithologically logged in varying levels of detail. All core and non-core holes at Glendell North have detailed lithological logging which is suitable for seam correlation purposes if no geophysical logs are available This method is suitable and appropriate for all aspects of mining. Limitations of the JBC holes include lack of core in the higher stratigraphy and poor detailed logging of the Lemingtons and Ravensworth seam groups. The majority of these plies cannot be picked and/or correlated so the use of modelling software and algorithms decides based on boreholes nearby where and how thick the seams will be in the abovementioned seam groups. Although depth and thicknesses are derived from known quantitative points it is in the author's opinion that modelled data is more qualitative therefore less confidence in classification is exercised.

		Core was quantitatively logged to centimetre accuracy; non core chip logging sampled at 1 meter intervals and logged to approximately half a meter accuracy. All recent core and non core chip samples were logged and are All recent core holes have core photography and geophysics	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Coal sampling strategies tended to change with each coring programme, over the years resulting in a mixture of ply and working section samples and a limited combined database with which to model variations across the lease. Drilling programs from 2001 to 2011 sampled using ply boundaries from geophysical logs and the analysis is carried out on working section composite samples. Drill holes from 2011, after an extensive re-correlation of the Mt Owen Complex (includes Glendell North), have been sampled and analysed on a ply basis where possible The full core once corrected for depth and correlated by seam/ply, is then placed in sample bags, clearly labelled to be sent to the labs. Exploration planning decides the appropriate diameter core to ensure sufficient sample mass – thinner seams that do not have enough mass are crushed without pre-treatment or combined with other plies. No splitting or sawing of core takes place. Sample preparation at the laboratory complies with Australian Standards for sample preparation. Exploration geologist liaise with lab and validate results, sample sizes are to an Australian standards for the designated treatment process. No non-core material was sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading 	The majority of coal quality holes have raw coal analyses which has been compiled by A&B Mylec, validated and used to create the raw quality grids tables ready for modelling. Certain correlations and relationships exist with coal quality variables and these are tested to prove confidence in lab results.	COAL MINING SOLUTIONS Geological Consulting & Contract Hire

	 times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established). 	Laboratories used to analyse coal cores during exploration, mining or loading all comply with Australian Standards for sample preparation and coal quality testing, they are certified by the National Association of Testing Authorities Australia (NATA). Downhole geophysical logging undergoes quality assurance and quality control through routine tool calibration.
Verification of sampling and assaying		Laboratories used to analyse coal cores have complied with Australian Standards for coal quality testing and are certified by the National Association of Testing Authorities Australia (NATA).
	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Repeat sampling on a regular basis to validate results is standard procedure for proximate analysis testing. A&B Mylec (coal quality consultants) have been involved in validating laboratory results, compilation and management of the coal quality database and overseeing sample preparation and analysis regimes for Glendell North core. Twinned holes have been drilled in the 2012 program to validate the older pre 1981 JBC holes. Although the collar RL value is slightly wrong the JBC hole was correct lithologically. Lithological and geophysical data are stored in Vulcan isis database, they are undergoing an uploading process to Glencore's Geobank databases so version control and validated data does not get lost or corrupted. Part of this process is validating all lab data.
		Quality data is compiled by Ab Mylec before being entered into Vulcan – they are presently the custodians and up keepers of coal quality data for Glendell North presently. All databases are reviewed prior to loading into Vulcan, then undergo Glencore's internal health check process which coal quality is a main component
		Various regression relationships derived by coal quality advisers A&B Mylec, are used to fill in gaps of no data, these values are colour coded to let the user know it is not a tested sample.

		In-situ moisture holding capacity testing to determine the in-situ density has been completed so correct reporting of the resource can be undertaken.
		All parameters from proximate analysis are also normalised to 2.5% moisture using Preston-Sanders equation for gridding in Vulcan.
		Logged sample intervals are checked against down hole geophysical logs and depths corrected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Coal Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	There are several generations of drill holes. Survey quality of more recent drilling is considered accurate while older drillhole collars may be less accurate. This is certainly the case with JBC boreholes which have been known up to 20m out from collar coordinates. This doesn't present a major problem as the topography is relatively flat with only minor z value variance. All drillhole collars used for the geological model at Glendell North are within several metres of the DTM. Survey pickup has been completed by registered mine surveyors. Mine survey is recent and reliable. Grid system is GDA94 in Zone 56. Topographic control can be coarse in older mined out areas and
		under older dumps, as newer LIDAR data is incorporated into original topography surfaces newer project like Glendell North are very accurate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and coal quality continuity appropriate for the Coal Resource and Coal Reserve estimation procedure(s) and classification applied. Whether sample compositing has been applied. 	Drill spacing for the JBC 1960's to 1980's exploration was developed for exploring the region for potential underground deposits. However due to increasing deformation towards the east, and closer to the basin margin, the gentle almost flat seams of the central Hunter Valley become progressively steeper and present as large undulating folded anticlines and synclines before major thrust faulting with considerable displacements create a very deformed and complicated stratigraphy, not suited at all for underground mining.
		In 2012 Glendell north project started drilling but mainly disregarded these previous holes to ensure the viability of the resource was not compromised by 'potentially' old unreliable data. These holes generally trend along the centre of the project

	orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	
	and reported if material.	Prior to this, holes are assumed vertical in the model. The use of verticality data corrects the apparent thicknesses and z
		value of the seam spatially. Vertical drilling in coal deposits that reside in large scale folds is
		the best practice and most un bias way to sample. As the entire cored interval is sampled any additional material due to apparent thicknesses would be evenly distributed over the seam. Although discussion resides around apparent thickness creating errors in folded deposits when modelling. It is wrong to think this and what is known to be apparent thickness is the true thickness that will be mine at that given point in space, as stated above sampling flat seams to dipping seams will not create any bias as they are all proportionally the same.
Sample / data security	The measures taken to ensure sample security	Coal in core is stored onsite in a locked freezer until correlations are completed. They are then plied out and samples are double bagged, tagged and documented for despatch by courier. Sample mass is always compared to sample length by the laboratory.
		Data stored digitally is only accessible by certain people within the business and protected by IT' in terms of back up and viruses etc. Geobank restricts more people again and also controls what can and cannot be deleted, copied, etc. This is a suitable system
Audits or reviews		The process from capture of geological data at the drill rig, to correlation of coal seams intersected and completion of drill logs, to loading and geological modelling is considered best practice by industry standards.
	 The results of any audits or reviews of sampling techniques and data. 	A external audit was conducted by ground design's Darren Hope on the Lemington seams, Barret Seam and Liddell Seams in the project area which looked for anomalies in the Ash vs RD, Ash vs VM and Ash vs SE relationships.
		These anomalous values were investigated and mostly found the seam picks were not aligned to sample interval i.e. roof or floor being composited into the working section. This can happen two ways – not correcting depths before sampling and /or changing seam picks in database or spreadsheets without considering

Section 2 Reporting of Exploration Results

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status		CL708 is held by Liddell Tenements PTY LTD a joint venture between Glencore and Matsushimi. It was granted on the 17 th of May 1990 and will expire on the 30 th of December 2023. Cl708 covers an area of ~2187 hectares.
		The Homestead a national heritage building and adjacent farm buildings are a major constraint in the middle of the lease with a cost of ~\$21 million to relocate - as per initial assessment. The joint venture adds some complexity for approval, along with several creek diversions and a major road reposition.
	Type, reference name/number, location and ownership	Glencore interest in CL708 = 67.5%
	including agreements or material issues with third parties	Matsushimi interest in CL708 = 32.5%
	 such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	Two Exploration Leases have recently been acquired by Glendell Tenements Pty Ltd. EL6594 and EL8184 are mostly at shallow depts. i.e. natural topography down to 15.24m. The limit of oxidation is dependent on the overlying strata, massive or interbedded stratigraphy, pervasive jointing, clay tuffs or weathered coal and geological structure. Weathered coal below massive sandstone can be smutty down to 30m and clay can have
		the opposite affect protecting coal from weathering only metres from the surface. Due to this the new leases only contain minor amounts of coal and were only purchased to gain surface rights.
		Glencore interest in EL6594 and EL8184 = 100%
		These EL's will need to be converted into ML's if the project goes ahead.
		The security of the tenure and the likelihood of obtaining a ML from government is not considered a risk at the time of writing this report.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	A total of 64 NQ holes totalling over 7250m were drilled across the region, by Renison Goldfields Consolidated (RGC) between 1969 and 1981. These holes were drilled to the Barrett Seam under

COAL MINING SOLUTIONS Geological Consulting & Contract Hire

the supervision of geologists from the Joint Coal Board. The Hebden Seam was not considered to be of economic significance at that time so few holes were extended below the Barrett Seam to intersect the Hebden Seam.

Drillhole data from partially cored slim NQ holes in the Liddell South/Glendell North area (CL708, from the CL358 northern boundary to the Block Fault Zone. These holes were drilled by JABAS as part of the Bowmans Creek drilling program in the 1970's, giving a "JBC" prefix to the holes. The holes often intersected the Hebden Seam and allow a continuation of data and structural grids throughout the region i.e. (CL358) up to the Block Fault Zone in CL708.

These holes were not geophysically logged. A geophysically logged hole drilled in ML1629 in 2011 adjacent to a JBC hole indicated core sections have reliable depth and thickness information.

Six large diameter (200mm) partially cored drill holes south of the project area, totalling approximately 600m were drilled by Glendell Joint Venture (GJV) in 1994 to obtain detailed sizing and coal preparation data. The holes were sited next to older slim holes to provide a comparison between the two data sets. Full seam intersections were obtained from Pikes Gully to Barrett Seams and the data has been used to provide product yield and ash predictions.

Since April 2000 exploration drilling has been widespread, more reliable and geology better understood across Glencore sites Mt Owen, Glendell, Ravensworth and Liddell - however this was not unit 2012.

In 2012 a series of HQ boreholes were drilled by Glencore, 11 cored holes and 19 non-cored. These are given the GN prefix and targeted the anticline for structural control and coal quality of all plies in a north south orientation generally along the anticline axis which proves consistency and expected trends from Glendell to Liddell

Deposit type, geological setting and style of mineralisation. Coal seams at Glendell North occur within the Vane Sub Group of the Late Permian Whittingham Coal Measures. Eight seams

Geology

٠

with open cut potential have been identified across the lease area within the stratigraphic interval from the

Lemington seam group to the Hebden Seam with minor Bayswater tonnes along and near its crop line.

The distribution of coal seams across the lease is governed by the main structural feature of a northerly plunging anticline which is flattening out in the north, topography and depth of weathering.

The lower seams in the sequence crop out only in the south at Glendell while seams higher in the sequence crop in a north-south strike along the limbs of the anticline.

The Bayswater Seam of the overlying Jerrys Plains Sub Group is intersected in holes to the east and east and west of Glendell North.

Coal measures in this part of the Hunter Valley have been deposited in an extensional event during the Permian . Transgression and regression events have occurred and bioturbation from marine creatures can be seen and are fossilised directly below the Bayswater seam in the Archerfield sandstone. This marine influence is evident throughout the Lemington sequence with increases sulphur up to from 1-3%. The waxing and waning caused lots of splitting and coalescing of thin Lemington plies which then were subject to a number of phases of post-depositional tectonics.

Large basin-bounding faults, such as the Hunter and Hebden Thrusts, give way to large steeply dipping anticlines and synclines only to broaden out into gentle undulating seams that flatten out the in the west. Evidence of Syn-depositional environments can be seen in the eastern project boundary with interburdens above the Bayswater seams relatively thin along the anticline and thicker further east in the Rix's Creek syncline. This suggests deposition was occurring during the east/west compressional event (new England fold belt– 5m interburdens thicken to 20m) Compression due to the subducting pacific plate evolved into volcanism with regional dykes and sills occurring in the north project area. Normal faulting is associated with the volcanism as magma chamber deplete and/or extension occurring - evident in the block fault zone. This zone is a regional structure

		It traverses through the Project area and has been mined through with open cut methods successfully several times previously. It does not pose any significant risk economically. Since these major tectonic events the Hunter river and its tributaries have eroded the sediments creating the Hunter Valley.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Individual drill hole results are not tabulated and presented in this report however can be if requested and approved by Glencore Management.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	All coal seams intersected have been correlated on a - ply by ply basis throughout the deposit using geophysics (where available) and drill hole graphic logs. Ply coal quality has only been composited, weighted by length and Density. No cut offs for coal quality have been applied. Cut-offs on thickness have been applied as a legacy from previous reports. Anything less than 0.3m is not reported This needs to be changed because it is a ply model and does not reflect what will be mined. No metal equivalents reported.

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known). 	The anticline is asymmetrical with a steeper eastern limb. The fold axis is slightly east of the centre of the lease. The dip of strata on the more gently dipping western limb decreases towards the western margin of the lease. Strip ratios more favourably along crest of anticline (4.5:1 and progressively increase on either limb to 7:1)
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not limited to a plan view of drill hole collar locations and appropriate sectional views. 	Figures presented in this report include: Lease Details, Resource Reporting Areas, Coal Resources, Bayswater, Lemington Seams, Pikes Gully, Arties, Liddell and Barrett Seams resource classifications
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Raw coal quality data from all coal samples analysed and reported by the laboratory have been loaded and used in the computer geological model when estimating coal resources. Outputs from the model honour the data. Weighted average ash and calorific value at an in situ moisture basis are presented in the Resource Declaration.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Groundwater models created from piezo's and geological model
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	There is currently exploration work being conducted. This is work for the feasibility report and for confidence in seam geometries and coal quality

COAL MINING

SOLUTIONS

Geological Consulting & Contract Hire

Section 3 Estimation and Reporting of Coal Resource

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Coal Resource estimation purposes. Data validation procedures used. 	Geological ply models are published in February for the LOM process. They are reconciled and compared to previous year's model for major variation. To create the latest model - tables are exported from previous model to ensure that all edits are not lost, then all recent blast hole data/exploration data is added. Validation checks conducted i.e. proximate = 100. Reconciliations - between 2016 and 2017 models display an increase in resource tonnes in the order of 0.4% (1.7Mt out of the 445Mt) – this check provides confidence in the data. Database integrity will be fully rolled out for 2018 model builds utilising Geobank as the primary source which will have version control, restrictions and the one source of validated data.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person (CP) is the current Resource Geologist across the Complex who has a sound knowledge of the geology and mining of identical deposits at Liddell, Glendell and Mt Owen. No inspection as this is in project stage
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Coal Resource estimation. The use of geology in guiding and controlling Coal Resource estimation. The factors affecting continuity both of grade and geology. 	There is a relatively high level of confidence in correlation of coal seams throughout the deposit with the use of downhole geophysical logs in Mapteks Eureka software. The Lemington and Hebden Seams have lower confidence as Lemington has been extensively eroded around the plunging Camberwell Anticline and many holes were only drilled to the Barrett Seam so did not intersect the underlying Hebden Seam Seam picks are considered to be accurate, however stone bands / seam splits were not consistently sampled during early

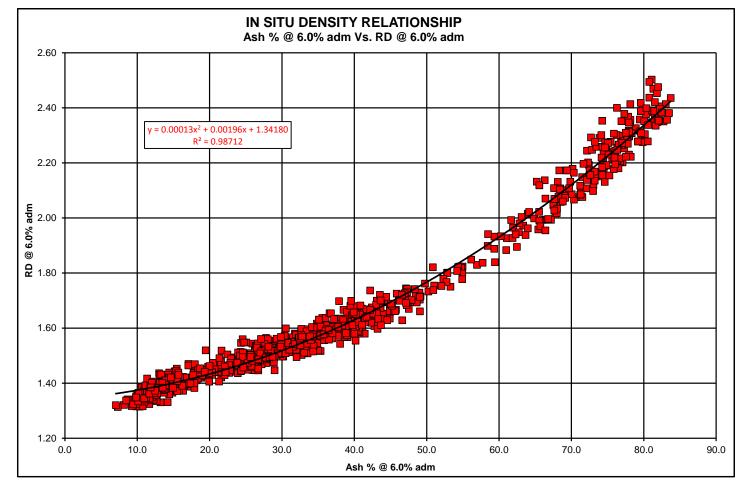
		Ň
		exploration programmes. Coal seam continuity, thickness and coal quality parameters are well understood in the Indicated and Measured Resource categories due to the spacing of drill holes and the subsequent data provided back from the CHPP which is used as a means of reconciliation. The main geological feature at Glendell North is the Camberwell Anticline. Small-scale (<10m throw) faults may occur, although they are not expected to influence the status of the resource. The Hunter Valley Dyke does intrude CL708 along a NE/SW strike Grades from Glendell in the South to Liddell in the North display consistency with little change providing confidence when classifying at borehole spacing's of 350m
Dimensions	 The extent and variability of the Coal Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Coal Resource. 	CL708 covers the most northern area of the Camberwell Anticline. Open cut resources reside in the 300m down from surface and below this underground resources have been defined.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Coal Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of 	All plies (Lemington to Hebden) have seam thickness and elevation gridded in Vulcan to allow assessment of the structure and trends of coal plies. The ply model algorithm used was structural surfaces and all seams are modelled. Interpolated thicknesses have been assigned a zero value and then modelled to give interpolated values to understand variance. There was little change noted. Structure grids are cut to topography / base of weathering / void. Ply structure grids have 25m mesh size, quality grids are 25m mesh size. All quality samples are used in modelling except values that have been assigned an 'E' which denotes that this value will not be modelled. These values are outliers when evaluating correlation coefficients of the standard quality regressions (e.g. Ash vs RD etc.) Base of weathering (BOW) is gridded using borehole data picks. A substantial geological dataset in the central part of the area confirms seam thickness, quality and continuity and is sufficient for classification as Measured and Indicated Resources. Outside this area, there is insufficient information to determine coal continuity so Inferred Resources have been assigned. Measured Resources were generally supported by data points (drill holes) no more than 200m-350m due to continuity of coal quality and

	reconciliation data if available.	lack of change in geophysical signatures of open holes. Indicated Resources were generally supported by data points no more than 500m apart moving out from the north/south measured polygon, and Inferred Resources were supported by only sparse data points.
		Localised occurrences of somewhat more sparse data within a defined resource category zone may exist. depth cut-offs have been used to limit the resources in underground areas only for the Lemington Seams, Measured and Indicated resources are less than 300m deep and only minimum Inferred resources extend beyond 300m depth.
		Resources were estimated using a computer model (Vulcan). Seam thickness was gridded using 25m grid node spacing and cut on a BOW grid and mined out areas as of June 2017- which does not affect Glendell North area, note that the Narama vold is in newly obtained EL and needs to excluded – previous models do not pick above Bayswater seam data here.
		In situ density grids were developed using 25m grid node spacing. The resource polygons were in turn made into solid triangulations. A minimum ply / seam thickness of 0.3m and Lemingtons seam below 300m was applied. A block model was created from grids with a block size to match the grids at 25m
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Coal resources were estimated using in situ density adjusted to 6% moisture. ARD-Ash regression relationships derived by coal quality advisers A&B Mylec, were used to calculate in situ density for resource estimation and gridded in the geological model.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Any coal less than 30cm thick has been excluded – which is under review and likely to change Only 4.5Mt of the resource is greater than 40% ash, these plies are very thin and most of them are mined in a thicker working section – it is not correct to apply cut offs on a ply model so this has not been undertaken.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual 	Resources estimated on a ply basis. No interburdens (non-coal) material between coal plies has been included in the resource tonnage. No working section logic or aggregation has been

	economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Coal Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	applied. ROM to in situ ratios of adjacent pits are close to one which demonstrates this methodology represents the resource. The majority of coal resources are typically less than 300m in depth, and are best suited to open cut mining methods. In the east under ML1415 and in the west below Narama's void are the two areas that are less likely to be mined.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Coal Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	To determine grade for CL708 Glendell mine is used as it resides directly to the south - seam distribution is the same. Glendell produces three export thermal coal products (at 9% as received moisture): less than 12% product ash (average 11.35%), less than 6% sulphur and calorific value 6570 kcal/kg; less than 12% product ash (average 10.25%), greater than 0.6% sulphur and calorific value 6660 kcal/kg, less than 17% product ash (average 13.1%) and calorific value 6320 kcal/kg. Glendell also produces an export semi-soft coking coal with less than 9% ash, CSN greater than 4 and calorific value of 6815 kcal/kg at 9% as received moisture.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	No environmental assumptions have been made for this resource estimate, however, NSW Coal Mines require development consent under the Environmental Planning and Assessment Act, 1979 before a mining lease is granted. Resources located in leases granted under the Mining Act, 1992 have environmental management and rehabilitation conditions, security bonds for all mining and exploration titles and clear enforcement power to ensure titleholders comply with their obligations.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the 	Coal resources were estimated using in situ density adjusted to 6% moisture. And defaults used for the few seams that have not been sampled Because of the lack of historical ARD density determination, ARD-Ash regression relationships derived by coal quality advisers, A&B Mylec, were used to calculate in situ density for resource estimation and gridded in the geological model.

	evaluation process of the different materials.	
Classification		Coal resources were estimated for all seams (Lemington to Hebden). Resource classifications reflect the Competent Person's confidence in the deposit. The status of coal resources within each polygon was classified either as a:
	 The basis for the classification of the Coal Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	Measured Resource – where the geological data points based on detailed and reliable exploration, sampling and testing information support a reasonable level of confidence in seam thickness, continuity, coal quality and structure. Measured resources were typically supported by points of observation less than up to 350m apart.
		Indicated Resources - where the geological data points contributed to a reasonable level of confidence in seam thickness and continuity, as well as some coal quality. Indicated resources were typically supported by points of observation less than 500m apart.
		Inferred Resources - where there was a limited and /or no coal quality data within the area and/or drill hole spacing was only sufficient to delineate seam thickness to a low level of confidence. Inferred resources were typically supported by sparse points of observation.
Audits or reviews	 The results of any audits or reviews of Coal Resource estimate, including review with Reserve CP and Glencore Management. 	The geological model was audited by Ground Designs Pty Ltd prior to undertaking resource estimations. Comparisons were conducted between the old Minex model and Vulcan model. Coal Resources each year have been reconciled against the previous year's JORC estimation to explain variance.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Coal Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local 	Coal resources have been classified into Measured, Indicated or Inferred Resources depending on the density of points of observation (core and non-core holes with geophysics) which provide varying levels of confidence in the resource estimate. The resource estimation is a global estimate. No mine exists to reconcile

A&B MYLEC Pty Ltd COAL QUALITY REGRESSION SLIDES – 22nd April 2021

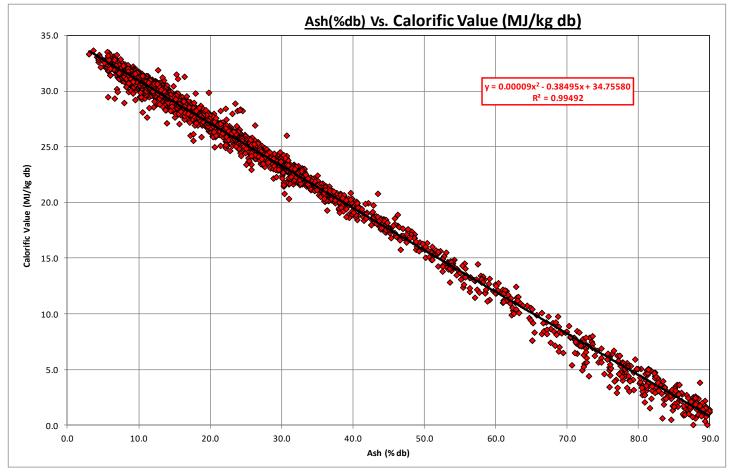

DEVELOPMENT OF IN SITU DENSITY EQUATION

- The following stages are involved in deriving an in situ density equation for a given resource:
 - 1. Following analysis, the laboratory raw ash data is converted from the as analysed air-dried moisture to the assumed in situ moisture basis (eg 6%)
 - 2. The laboratory relative density is converted from air-dried to the assumed in situ moisture basis utilising the Preston Sanders Equation, as defined below:

RD(in situ) = RD(ad) *(100-IM(ad)) / [100+RD (ad)*(IM(ins) - IM (ad)) - IM (ins)]

- Where:RD (in situ) = In situ densityRD (ad)= Air Dried Relative DensityIM (ins)= In situ Moisture LevelIM (ad)= Air Dried Moisture
- 3. These two datasets are then regressed to develop the ash/in situ density relationship.

IN SITU DENSITY RELATIONSHIP

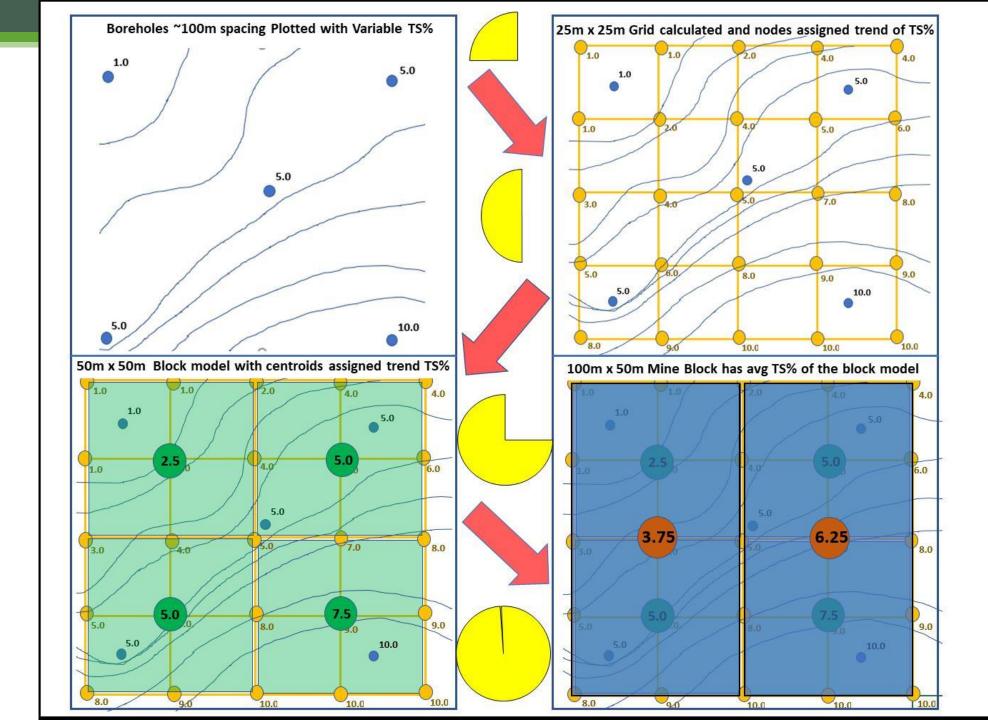

In Situ Density = 0.00013 x Ash %² + 0.00196 x Ash % + 1.34180 [R² = 0.98712] Where Ash % is at 6% moisture basis

A&B MYLEC Pty Ltd

OTHER STANDARD COAL QUALITY RELATIONSHIPS

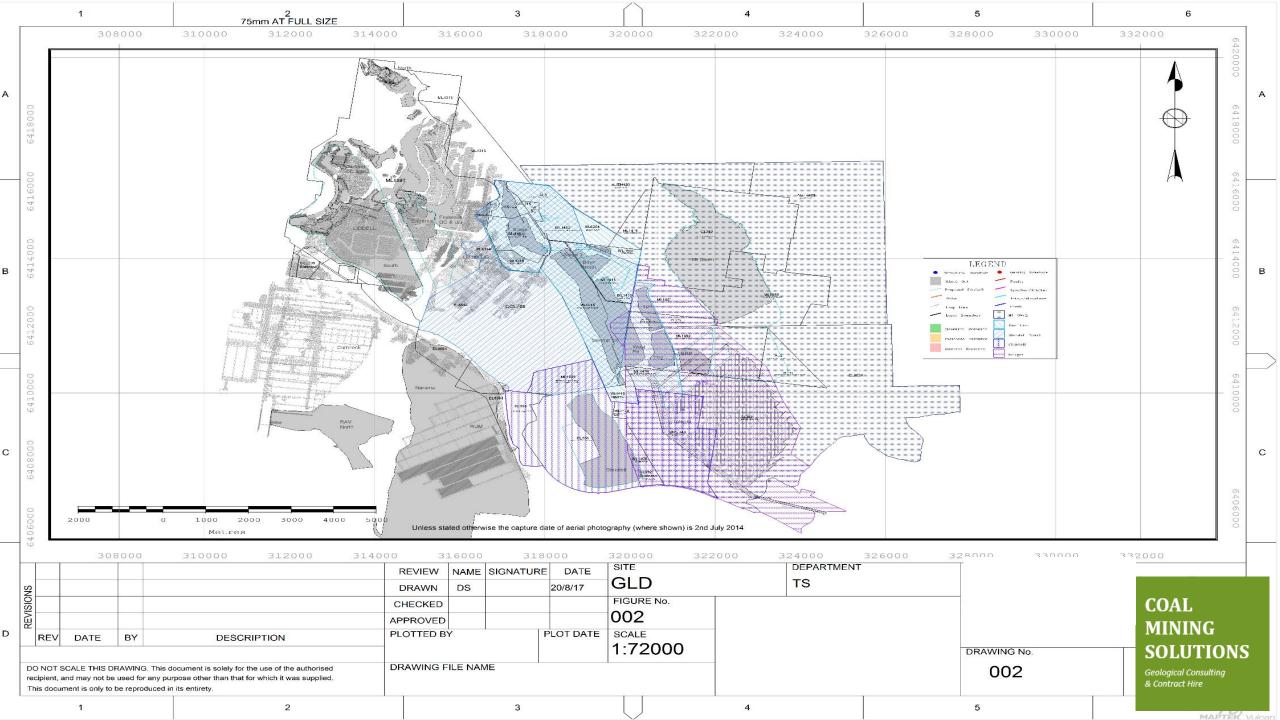
- Ash (%ad) vs ARD
- ARD vs Ash (%ad)
- Ash (%db) Vs. Calorific Value (MJ/kg, db)
- Vol vs fax Mf (max Fluidity)

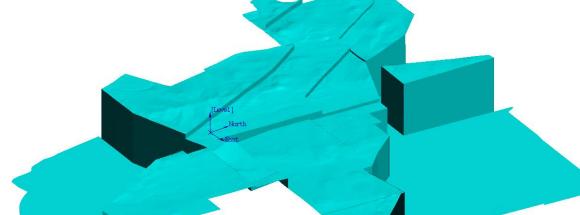
ASH (%db) Vs. CV (MJ/kg, db)



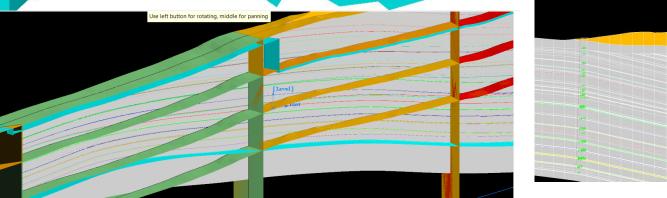
CV MJ/kg (db) = 0.00009 x Ash % (db)² – 0.38495 x Ash% (db) + 34.75580 [R² = 0.99492] Where Ash % is at a Dry Moisture Basis

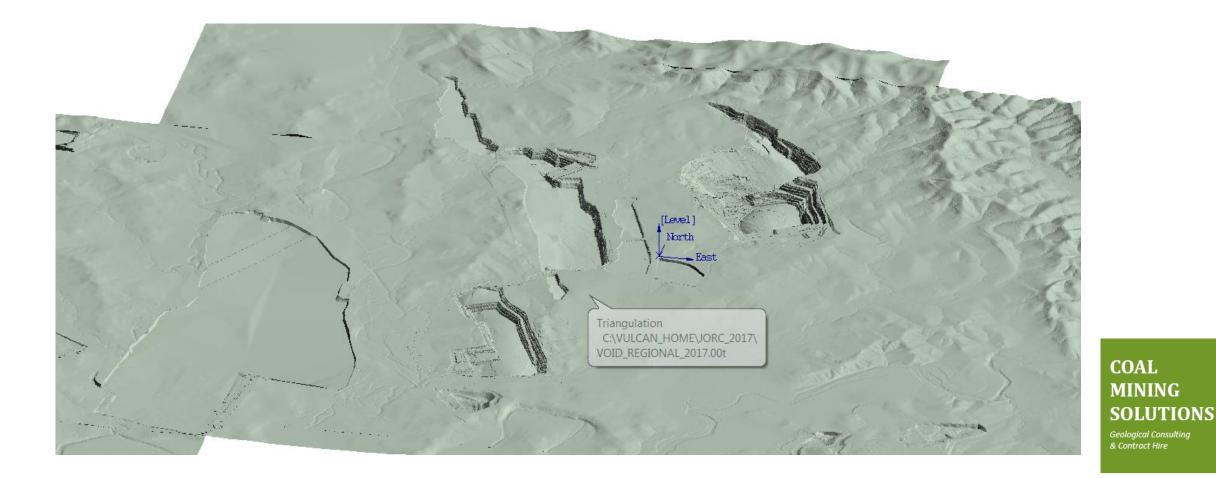
A&B MYLEC Pty Ltd

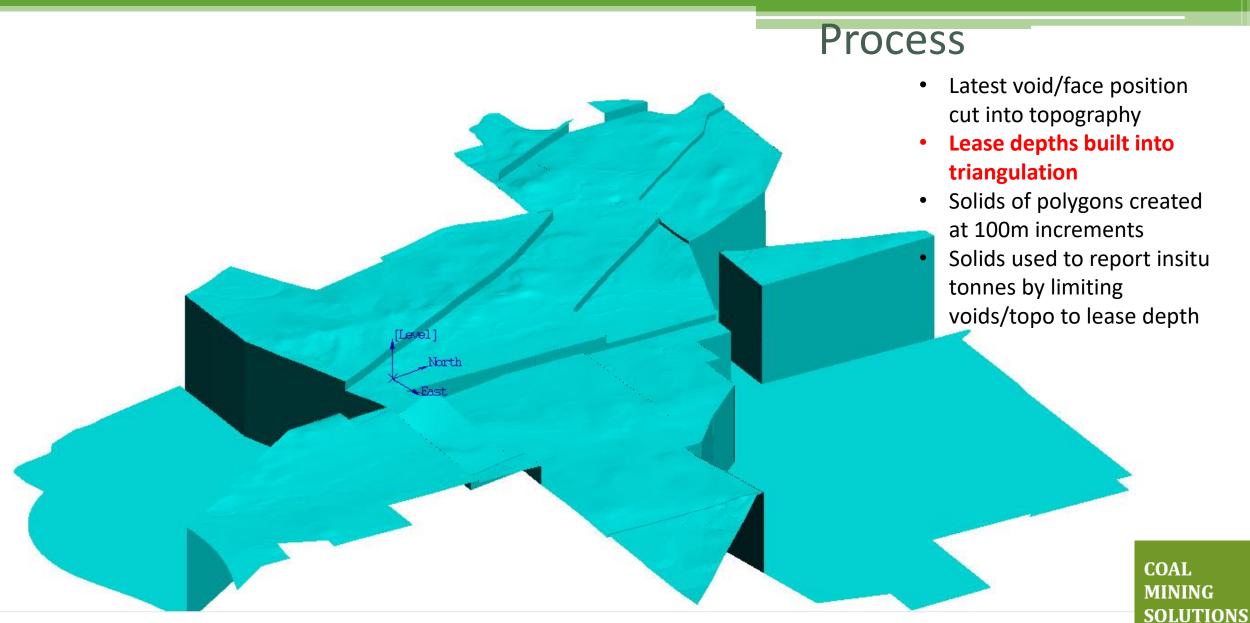

Considerations when using Block Models for Resources



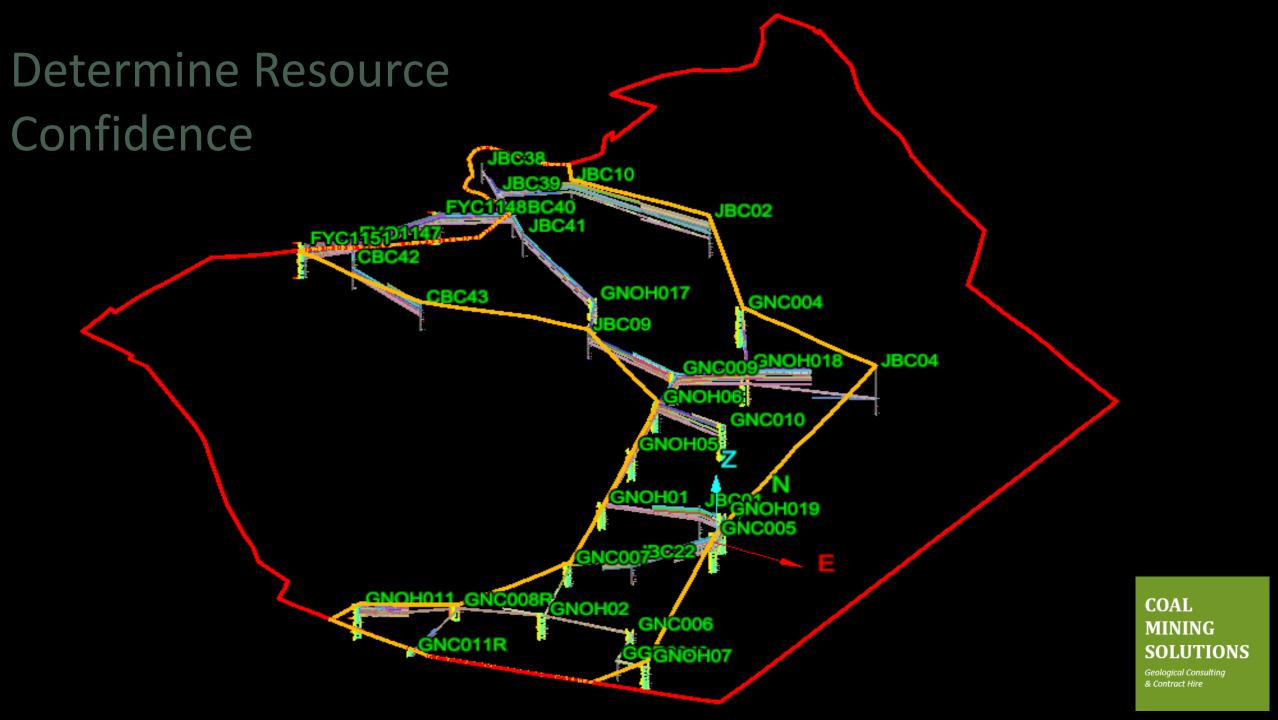
Daniels Methodology for JORC Reporting

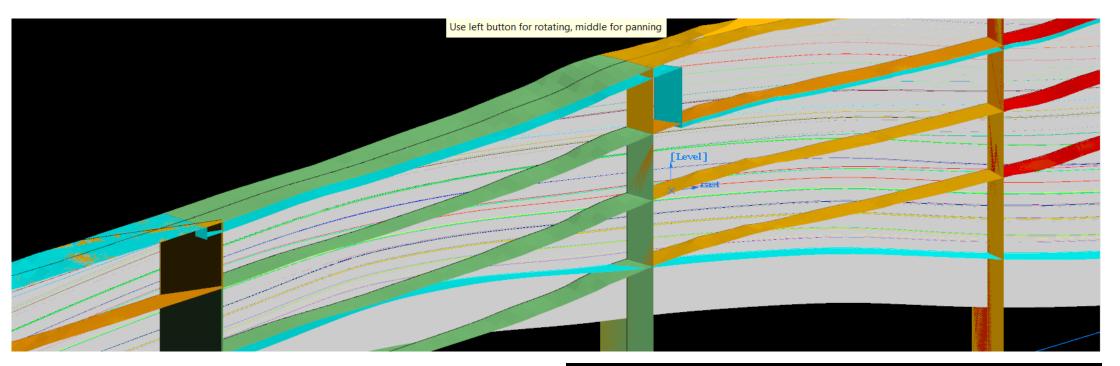




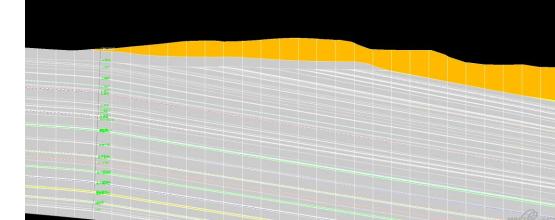

Process

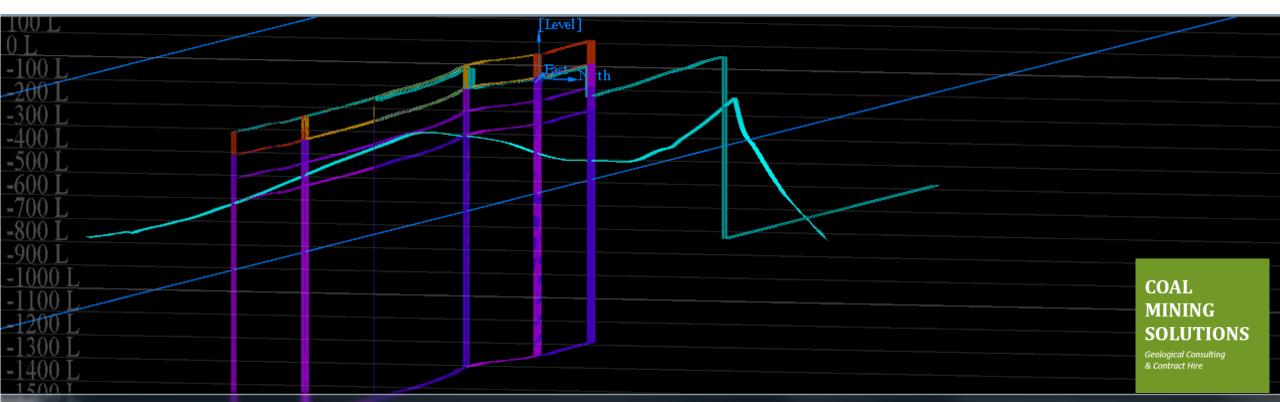
- Latest void/face position cut into topography
- Lease depths built into triangulation
- Solids of polygons created at 100m increments
- Solids used to report insitu tonnes by limiting voids/topo to lease depth

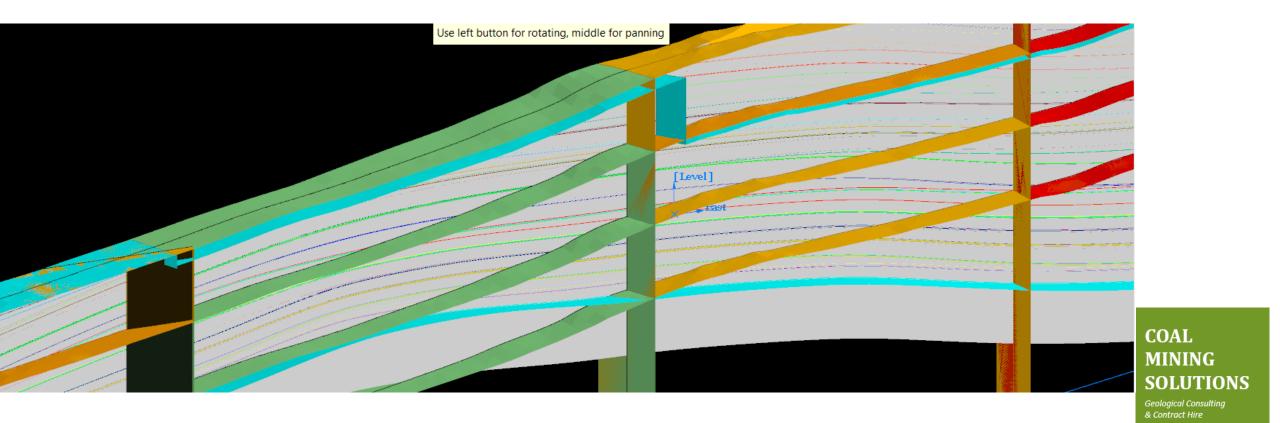

- Latest void/face position cut into topography
- Lease depths built into triangulation
- Solids of polygons created at 100m increments
- Solids used to report insitu tonnes by limiting voids/topo to lease depth

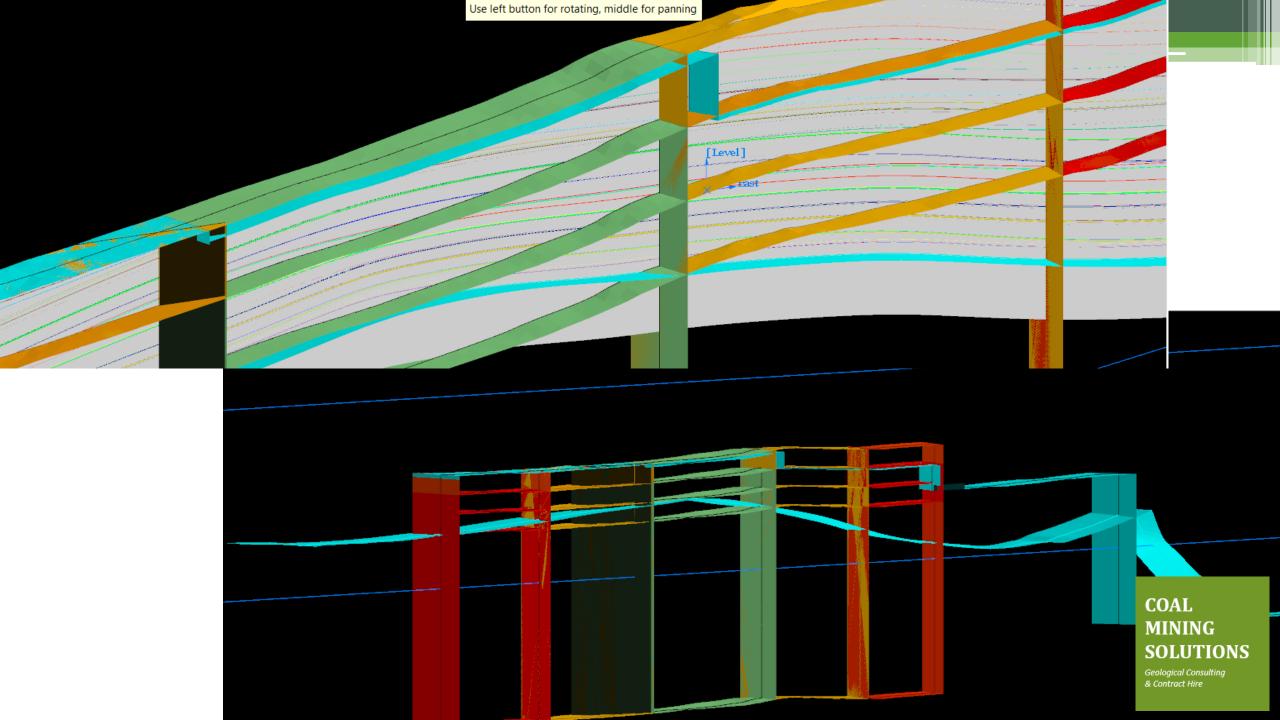


41

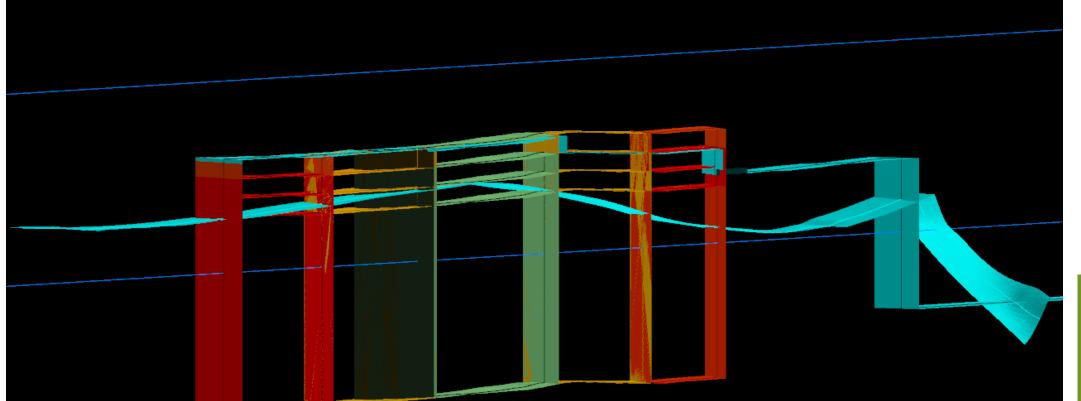

Geological Consulting & Contract Hire




- Latest void/face position cut into topography
- Lease depths built into triangulation
- Solids of polygons created at 100m increments
- Solids used to report insitu tonnes by limiting voids/topo to lease depth



- Latest void/face position cut into topography
- Lease depths built into triangulation
- Solids of polygons created at 100m increments
- Solids used to report insitu tonnes by limiting voids/topo to lease depth



Solid triangulations cut by 100m intervals (0-100m, 100m-200m, 200m-300m, 300mdeep) by translating original topography in 100m increments (all relative to original RL)

Advance reserve editor used on HARP Model to cut resource by solids limited by void model and bottom of lease surface (bottom depth of all leases merged into one triangulation)

	A B	C	D	E	F	G	н	I. I.	J	к	L	M	N	o	P	Q	В	S	т	U	٧	V
1 SOUR		SEAM	SEAM S			STRAT_ORDER STR	RAT_ORDER_VOLUM	AT_ORDER_MAS\$	TRUETHICK :		RUETHICK_MASS AS	25AD A	AS25AD_VOLUME A	S25AD_MASS	SE25C S			NSITU_PERC INSITU_	PERC_VOLUME I	NSITU_PERC_MASS	TOTAL_VOLUME	TOTAL_MASS
	JORC_SP Jorc_polyg		90	1355322.707	1843491.58	216	1355322.707	1843491.576	0.6733849	1355322.707	1843491.576 12		1355322.707	1843491.576	28.828413	1355322.707	1843491.576	0	0	0	1355322.707	1843491.576
	JORC_SP Jorc_polyge		92	438580.3611		214	438580.3611	594707.8314		438580.3611	594707.8314		438580.3611	594707.8314		438580.3611		0	0	0	438580.3611	
	JORC_SP Jorc_polyge		94			212	792538.9312	1066409.5		792538.9312		1.029291	792538.9312	1066409.5		792538.9312		0	0	0	792538.9312	
	JORC_SP Jorc_polyg		96	380831.8158		210	380831.8158	520966.4227		380831.8158		12.131114	380831.8158	520966.4227	29.117691	380831.8158		0	0	0		520966.4227
	JORC_SP Jorc_polyge		98	696953.4262		208	696953.4262	947652.0236		696953.4262		12.72614	696953.4262	947652.0236		696953.4262		0	0	0		947652.0236
	JORC_SP Jorc_polyge		100	631850.2624		204	631850.2624	944959.1274		631850.2624	944959.1274 2		631850.2624	944959.1274		631850.2624		0	0	0		944959.1274
	JORC_SP Jorc_polyge		104			200	470179.4392	670778.334		470179.4392	670778.334 16		470179.4392	670778.334		470179.4392		0	0	0	470179.4392	
	JORC_SP Jorc_polyg		106	1481304.375		198	1481304.375	2096702.531		1481304.375	2096702.531 1		1481304.375	2096702.531			2096702.531	0	0	0		2096702.531
	JORC_SP Jorc_polyg		110	1374273.182		194	1374273.182	1975954.221		1374273.182	1975954.221 18		1374273.182	1975954.221			1975954.221	0	0	0		1975954.221
	JORC_SP Jorc_polyg		112	1104112.446		192	1104112.446	1563773.882		1104112.446	1563773.882 1		1104112.446	1563773.882			1563773.882	0	0	0		1563773.882
	JORC_SP Jorc_polyg		114	268984.9692		190	268984.9692	431314.6561		268984.9692	431314.6561 33		268984.9692	431314.6561		268984.9692		0	0	0	268984.9692	
	JORC_SP Jorc_polyg		116	274657.425		188	274657.425	392427.4737		274657.425	392427.4737 15		274657.425	392427.4737			392427.4737	0	0	0		392427.4737
	JORC_SP Jorc_polyge		118	1144269.803		186	1144269.803	1616761.104		1144269.803	1616761.104		1144269.803	1616761.104			1616761.104	0	0	0	1144269.803	
	JORC_SP Jorc_polyge		120	371541.4621		184	371541.4621	525765.0487		371541.4621	525765.0487 18		371541.4621	525765.0487		371541.4621		0	0	0		525765.0487
	JORC_SP Jorc_polyge		122	444500.6332		182	444500.6332	662705.5667		444500.6332	662705.5667 2		444500.6332	662705.5667		444500.6332		0	0	0		662705.5667
	JORC_SP Jorc_polyge		124			180	160455.6025	263794.6819		160455.6025	263794.6819 40		160455.6025	263794.6819		160455.6025		0	0	0		263794.6819
	JORC_SP Jorc_polyge		126	170950.7064		178	170950.7064	249824.6566		170950.7064	249824.6566 2		170950.7064	249824.6566		170950.7064		0	0	U		249824.6566
	JORC_SP Jorc_polyge		130			174	319936.8402	499445.4345		319936.8402	499445.4345 32		319936.8402	499445.4345		319936.8402		0	0	0		499445.4345
	JORC_SP Jorc_polyge		132	36600.55347		172	36600.55347	55020.53501		36600.55347	55020.53501 28		36600.55347	55020.53501		36600.55347		0	0	0	36600.55347	
	JORC_SP Jorc_polyge		134			170	131577.3694	196588.2339		131577.3694	196588.2339 25		131577.3694	196588.2339		131577.3694		0	0	0	131577.3694	
	JORC_SP Jorc_polyge		136	63290.99777		168	63290.99777			63290.99777	90957.74283 20		63290.99777	90957.74283		63290.99777		0	0	U		90957.74283
	JORC_SP Jorc_polyge		138			166	4957.432956	7088.986241		4957.432956	7088.986241 2	1.715424	4957.432956	7088.986241	25.191302	4957.432956	7088.986241	0	0	0		7088.986241
	JORC_SP Jorc_polyge		140	318.2824071		164	318.2824071	477.4236107		318.2824071	477.4236107	U 2.005045	10050 00101	0	00.0100.40	U	00045 20142	0	0	0	318.2824071	
	JORC_SP Jorc_polyge		142	19856.80181		162	19856.80181	30245.71147		19856.80181	30245.71147 27		19856.80181	30245.71147			30245.71147	0	0	0	19856.80181	
	JORC_SP Jorc_polyge		144	10323.2994		160 158	10323.2994	16424.94633		10323.2994		35.5613	10323.2994	16424.94633			16424.94633	0	0	0	10323.2994	
	JORC_SP Jorc_polyge		146 148	703.461956		158	703.461956 622.996989	1143.321287		703.461956 622.996989	1143.321287 40 1076.106679 5		703.461956	1143.321287			1143.321287 1076.106679	0	0	0	703.461956	
	JORC_SP Jorc_polyge		140	622.996989 4.423500599		156		1076.106679					4.423500599	1076.106679		622.996989		0	0	0	622.996989 4.423500599	
	JORC_SP Jorc_polyge JORC_SP Jorc_polyge		150	267.9984398		154	4.423500599 267.9984398	6.281371188 429.5976517		4.423500599 267.9984398	6.281371188 18 429.5976517 3		267.9984398	6.281371188 429.5976517		4.423500599 267.9984398		0	0	0	267.9984398	
	JORC_SP Jorc_polygi JORC_SP Jorc_polygi		156	974.117432		152	974.117432	1648.780956		974.117432	1648.780956 43		974.117432	1648,780956			1648.780956	0	0	0		1648.780956
	JORC_SP Jorc_polygi JORC_SP Jorc_polygi		158	4223.328428		148	4223.328428	6923.829086	0.1566542	4223.328428	6923.829086 40		4223.328428	6923.829086		4223.328428		0	0	0		6923.829086
	JORC_SP Jorc_polygi JORC_SP Jorc_polygi		160	0.024915207		148	0.024915207	0.03841102		0.024915207	0.03841102 25		0.024915207	0.03841102		0.024915207		0	0	0	0.024915207	
	JORC_SP Jorc_polygi		76	1069160.063		230	1069160.063	1439341.061		1069160.063	1439341.061 1		1069160.063	1439341.061			1439341.061	0	0	0	1069160.063	
	JORC_SP Jorc_polyg		80	384200.5826		226	384200.5826	525103.7176		384200.5826	525103.7176 15		384200.5826	525103.7176		384200.5826		0	0	0	384200.5826	
	JORC_SP Jorc_polygi JORC_SP Jorc_polygi		82			220	444519.2667	600333.8221		444519.2667	600333.8221 15		444519.2667	600333.8221		444519,2667		0	0	0	444519,2667	
	JORC_SP Jorc_polygi		64	53651.61065		242	53651.61065	76936.51795		53651.61065	76936.51795 2		53651.61065	76936.51795		53651.61065		0	0	0		76936.51795
	JORC_SP Jorc_polygi		66	91032.81968		242	91032.81968	133620.3023		91032.81968	133620.3023 2		91032,81968	133620.3023		91032,81968		0	0	0	91032,81968	
	JORC_SP Jorc_polygi		70	126577.6877		236	126577.6877	182693.0125		126577.6877	182693.0125 20		126577.6877	182693.0125		126577.6877		0	0	0	126577.6877	
	JORC_SP Jorc_polyg		102			202	99136.90332		0.0889705	99136.90332	147587.93 2		99136.90332	147587.93		99136.90332		0	0	0	99136.90332	
	JORC_SP Jorc_polyg		102	114923.2093		196	114923.2093	169290.9004		114923.2093	169290.9004 28		114923.2093	169290.9004			169290.9004	0	0	0	114923.2093	
	JORC_SP Jorc_polygi		128			176	63446.42906	101504.3291		63446.42906	101504.3291 3		63446.42906	101504.3291		63446.42906		0	0	0	63446.42906	
	JORC_SP Jorc_polygi		56	8482.009012		250	8482.009012	11389.61161		8482.009012		1.948612	8482.009012	11389.61161		8482.009012		0	0	0	8482.009012	
	JORC_SP Jorc_polyg		74			230	126637.0724	186290.4243		126637.0724	186290.4243 2		126637.0724	186290.4243		126637.0724		0	0	0	126637.0724	
	JORC_SP Jorc_polyg		78			232	75369.62235	106959.3975		75369.62235	106959.3975		75369.62235	106959.3975		75369.62235		0	0	0		
	JORC_SP Jorc_polyg		62			244	25.16200777	40.96167388		25.16200777	40.96167388 42		25.16200777	40.96167388		25.16200777		0	0			
	JORC_SP Jorc_polyg		68			238	0.669895225	0.917756381	8.93E-06	0.669895225	0.917756381	14.5	0.669895225	0.917756381		0.669895225		0	0			
	ICPC SP larg polyg		72			234	11537 93039	17546 1137		11537 93039	17546 1137 3		11537 93039	17546 1137		11537 93039		0	n		OAL	
																					UAL	

COAL MINING SOLUTIONS Geological Consulting & Contract Hire

Normalise dataset to desired moisture basis

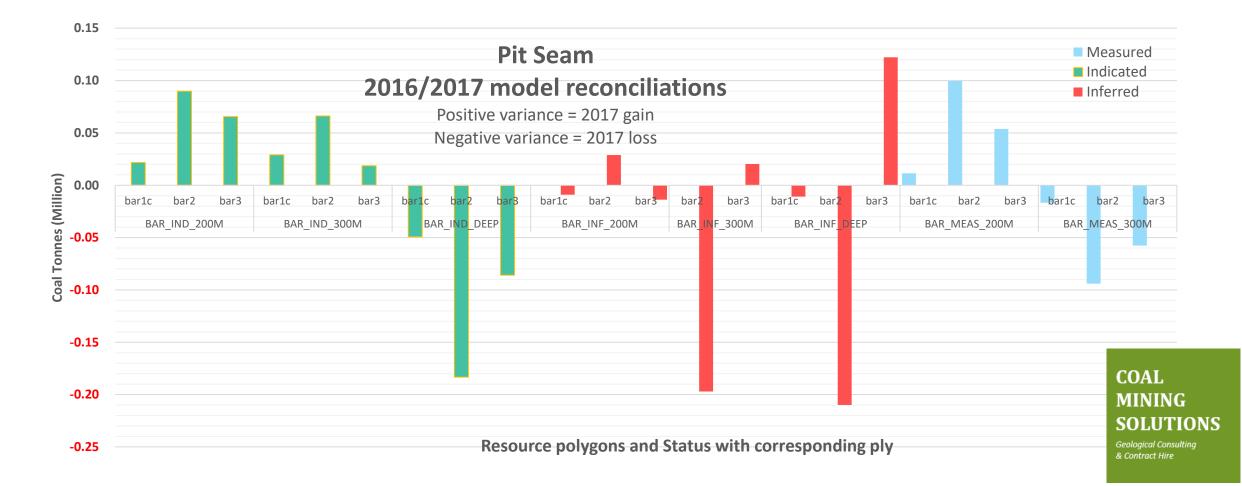
ਜ਼ ਨਾ ∂ - ∓		JORC_Glendell_North_FINAL_2017.xlsx	4 - Excel
File Home Insert Page Layout Formulas Data Review View Help	lp 🛛 🖞 Tell me what you want to do		
$\begin{array}{c c} & & & \\ & & & \\$	Wrap Text Accounting -	60% - Accent4	60% - Accent5 60% - Accent6
Paste \downarrow * Format Painter B $I \sqcup \downarrow$ \square	Merge & Center ▼ \$ ▼ % ፆ .00 .00	Conditional Format as Accent3 Formatting Table T	Accent4 Accent5
Clipboard 🕞 Font 🖫 Alignment	ra Number ra	-	Styles
L3 • : × ✓ f _x =K3*(6-100)/(2.5-100)			
AB		G H I J K	L M N O
1 SOURCE REGION	POLYGON SEAM GROUP STATUS DEP		
2 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_20161FINAL1res_2016_ART_INF1_100			
3 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_20161FINAL1res_2016_ART_IND_200			
4 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_20161FINAL1res_2016_ART_INF2_20			
5 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_20161FINAL1res_2016_ART_INF2_30			
6 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_2016\FINAL1res_2016_ART_INF2_100			59.10 12.13 2,896.64 2,792.66
7 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_2016\FINAL1res_2016_ART_INF1_100			51.67 13.07 3,122.20 3,010.12
8 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_2016\FINAL1res_2016_ART_INF2_100			51.47 13.14 3,138.34 3,025.68
9 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_2016\FINAL\res_2016_ART_INF2_20			50.43 13.54 3,234.38 3,118.28
10 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons1Liddell_Resource_2016\FINALires_2016_ART_IND_100			49.92 13.75 3,282.82 3,164.98
11 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons/Liddell_Resource_2016/FINAL/res_2016_ART_MEAS_1			49.41 13.95 3,330.40 3,210.84
12 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons/Liddell_Resource_2016/FINAL/res_2016_ART_INF2_30			48.94 14.12 3,372.72 3,251.65 48.15 14.43 3,446.69 3,322.96
 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons\Liddell_Resource_2016\FINAL\res_2016_ART_IND_200 LOM_JORC_SPOIL_MINEDOUT_150226. Jorc_polygons\Liddell_Resource_2016\FINAL\res_2016_ART_INF1_100 			46.74 15.29 3.650.59 3.519.55
14 LUM_JURU_SPOIL_MINEDUUT_150226. Jorc_polygonstLiddell_Resource_2016tFINALtres_2016_ART_INF100 15 LOM_JORC_SPOIL_MINEDUUT_150226. Jorc_polygonstLiddell_Resource_2016tFINALtres_2016_ART_INF2_100			45.60 16.35 3,904.38 3,764.22
16 LOM_JORC_SPOIL_MINEDOUT_100220. Jorc_polygonstillidell_resource_2016/FINALtres_2016_ART_INF2_100 16 LOM_JORC_SPOIL_MINEDOUT_150226_Jorc_polygonstillidell_resource_2016/FINALtres_2016_ART_IND_200			

Changing SE to Calorific Value

⊟ 5·∂·∓							JORC_Glendell_	North_FINAL_2017	7.xlsx - Excel		
File Home Insert Page	Layout Formulas	Data Review V	View Help	🔉 Tell me	what you want	to do					
Paste ★ Cut Paste ★ Format Painter	- 11 - A [*] <u>U</u> - ⊡ - <u>&</u> - A			p Text ge & Center 👻	Accounting	″ .00 -∌.0	Conditional Format	1100011100	nt4 60% - Acce Accent4	ent5 60% - Accen	Accent6 A t5 A
Clipboard 🕞	Font	G.	Alignment	5	Numb	er 🔤				Styles	
A	DECION	в					G H				
A 1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226	REGION			POLYGON	SEAM GROUP S			JSE TRUETHICAS2	25AD ASH@67 SE25		0 CV@6% IN 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res	ource_2016\FINAL\res_201 ource_2016\FINAL\res_201	16_ART_INF1_1001	POLYGON ART_INF1_100M ART_IND_200M	SEAM GROUP S ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEE 200M	SEAM TYPE L Idf COAL Idf COAL	JSE TRUETHIC AS2 0.00 6 0.01 6	25AD ASH@62 SE25 51.30 59.10 12 51.30 59.10 12	5C CV25 2.13 2.13 = M3*238.8	CV@6% IN 2,792.66 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res	ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201	16_ART_INF1_1001 / 16_ART_IND_2001 / 16_ART_INF2_200 /	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEE 200M NFERRED 200M	SEAM TYPE L Idf COAL Idf COAL Idf COAL	JSE TRUETHIC AS2 0.00 6 0.01 6 0.08 6	25AD ASH@6% SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12	5C CV25 2.13 2.13 =M3*238.8 2.13 2,896.64	CV@6% INS 2,792.66 2,792.66 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res	ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201	16_ART_INF1_1001 / 16_ART_IND_2001 / 16_ART_INF2_200 / 16_ART_INF2_300 /	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEE 200M NFERRED 200M NFERRED 200M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL	JSE TRUETHIC AS2 0.00 6 0.01 6 0.08 6 0.03 6	25AD ASH⊚62 SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12	5C CV25 2.13 2.13 =M3*238.8 2.13 2,896.64 2.13 2,896.64	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddel_Res . Jorc_polygons\Liddel_Res . Jorc_polygons\Liddel_Res . Jorc_polygons\Liddel_Res . Jorc_polygons\Liddel_Res	ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201	16_ART_INF1_1007 / 16_ART_IND_2001 / 16_ART_INF2_2007 / 16_ART_INF2_3007 / 16_ART_INF2_1007 /	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEE 200M NFERRED 200M NFERRED 300M NFERRED 100M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL	JSE TRUETHICAS2 0.00 6 0.01 6 0.08 6 0.03 6 0.03 6 0.16 6	25AD ASH@62 SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12	5C CV25 .13 .13 =M3*238.8 .13 2,896.64 .13 2,896.64 .13 2,896.64	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\LiddelLRes . Jorc_polygons\LiddelLRes . Jorc_polygons\LiddelLRes . Jorc_polygons\LiddelLRes . Jorc_polygons\LiddelLRes . Jorc_polygons\LiddelLRes	ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201 ource_2016\FINAL\res_201	16_ART_INF1_1007 / 16_ART_IND_2007 / 16_ART_INF2_2007 / 16_ART_INF2_3007 / 16_ART_INF2_1007 / 16_ART_INF1_1007 /	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEE 200M NFERRED 200M NFERRED 200M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL	JSE TRUETHICAS2 0.00 6 0.01 6 0.08 6 0.03 6 0.16 6 0.16 53	25AD ASH@62 SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 33.60 51.67 13	5C CV25 2.13 2.13 =M3*238.8 2.13 2,896.64 2.13 2,896.64	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res . Jorc_polygons\Liddell_Res	burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201	16_ART_INF1_1007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_1007 / 16_ART_INF2_1007 / 16_ART_INF2_1007 / 16_ART_INF2_2007 /	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M ART_INF2_100M ART_INF2_200M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEC 200M NFERRED 200M NFERRED 300M NFERRED 100M NFERRED 100M NFERRED 100M NFERRED 200M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idd COAL Icd COAL	JSE TRUETHICAS2 0.00 6 0.01 6 0.08 6 0.03 6 0.16 5 0.16 5 0.24 5 0.32 5	25AD ASH@6> SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 31.30 59.10 12 33.60 51.67 13 33.38 51.47 13 52.31 50.43 13.	5C CV25 13 13 -M3*238.8 13 2,896.64 13 2,896.64 13 2,896.64 13 2,896.64 07 3,122.20 04 3,138.34 54 3,234.38	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res Jorc_polygons\Liddel_Res	burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201	16_ART_INF1_1007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_1007 / 16_ART_INF2_1007 / 16_ART_INF2_1007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 /	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF1_100M ART_INF1_100M ART_INF2_100M ART_INF2_200M ART_IND_100M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEC 200M NFERRED 200M NFERRED 100M NFERRED 100M NFERRED 100M NFERRED 100M NFERRED 200M NDICATEC 100M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idd COAL Idd COAL Idd COAL Idd COAL	JSE TRUETHICAS2 0.00 6 0.01 6 0.08 6 0.03 6 0.16 5 0.16 5 0.24 5 0.32 5 0.32 5	25AD ASH@6> SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 31.30 59.10 12 33.60 51.67 13 33.38 51.47 13 52.31 50.43 13 51.78 49.92 13	5C CV25 2.13 2.13 2.896.64 2.896.64 2.896.64 2.896.64 2.896.64 07 3,122.20 0.14 3,138.34 54 3,234.38 75 3,282.82	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,018.28 3,118.28 3,164.98
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226	. Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201 burce_2016\FINAL\res_201	16_ART_INF1_1007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_3007 / 16_ART_INF2_1007 / 16_ART_INF1_1007 / 16_ART_INF2_1007 / 16_ART_INF2_2007 / 16_ART_INF2_2007 / 16_ART_INF2_1007 / 16_ART_INF2_1007 /	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M	SEAM GROUP S ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN ARTIES IN	STATUS DEPTH NFERRED 100M NDICATEC 200M NFERRED 200M NFERRED 300M NFERRED 100M NFERRED 100M NFERRED 100M NFERRED 200M	SEAM TYPE L Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idf COAL Idd COAL Icd COAL	JSE TRUETHICAS2 0.00 6 0.01 6 0.08 6 0.03 6 0.16 5 0.16 5 0.24 5 0.32 5 0.04 5 0.02 5	25AD ASH@6> SE25 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 51.30 59.10 12 31.30 59.10 12 33.60 51.67 13 33.38 51.47 13 51.37 50.43 13 51.78 49.92 13 51.25 49.41 13	5C CV25 13 13 -M3*238.8 13 2,896.64 13 2,896.64 13 2,896.64 13 2,896.64 07 3,122.20 04 3,138.34 54 3,234.38	CV@6% INS 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28

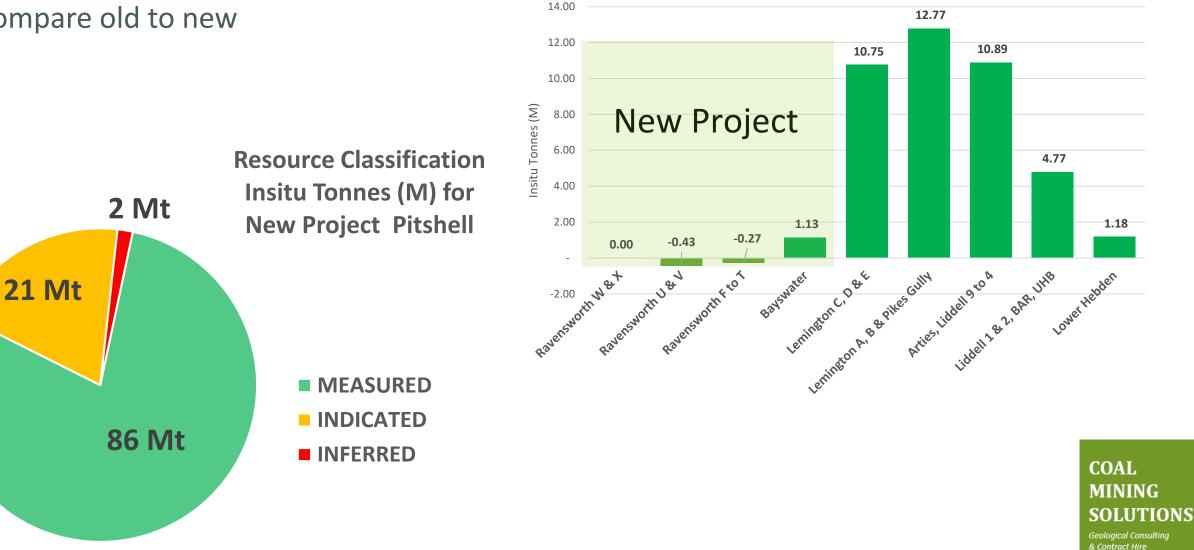
Normalising CV to 6% moisture

⊟ 5• ୯॰ ∓							JORC	_Glendell_N	lorth_FINAL_2	2017.xlsx	- Excel				
File Home Insert Page	Layout Formulas	Data Review	View Help	💡 Tell me	what you want to	do									
Calibri	• 11 • A	$ A^* \equiv \equiv \equiv$	ŵ∕r → Č ^b Wra	ap Text	Accounting	-	Ţ		60% - Ac	cent4	60% - Ac	cent5	60% - /	Accent6	Accent1
	<u>u</u> • 🗄 • 🖄 • 🦽	↓ • ≡ ≡ =	🗲 🔁 🖽 Me	rge & Center 🔹	\$ - % ,	.00 ->.0	Condition ormatting	al Formata ı≖ Table≖	Accent3		Accent4		Accen	t5	Accent6
Clipboard 🕞	Font	G	Alignment	5	Number	Fail 1						Sty	les		
03 • : × ✓	fx =N3*(6-100)/(2	2.5-100)													
		в		C		FF	6	н		к		м	N	0	P
A A	REGION	В		C POLYGON	D SEAM GROUP STA	E F ATUS DEPTH	G SEAM	H IYPE US	-	K AS25AD	L ASH@6% SE	м 25С <mark>С\</mark>	N	0 CV@6%	P INSITU_PER TO
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\LiddelLRes	source_20161FINAL1res_2		POLYGON ART_INF1_100M	SEAM GROUP STA ARTIES INFE	ATUS DEPTH ERRED 100M	SEAM I	i <mark>type</mark> us Coal	SE TRUETHIO	AS25AD 61.30	ASH@62 SE 59.10	25C CV 12.13 2	√25 2,896.64	CV@6% 2,792.66	INSITU_PER TO
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2001	POLYGON ART_INF1_100M ART_IND_200M	SEAM GROUP STA ARTIES INFE ARTIES INDIO	ATUS DEPTH ERRED 100M ICATEE 200M	SEAM I Idf I Idf I	T <mark>YPE</mark> US COAL COAL	5E TRUETHIO 0.00 0.01	AS25AD 61.30 61.30	ASH@ 6% SE 59.10 59.10	25C CV 12.13 2 12.13 2	√25 2,896.64 2,896.64 [CV@6% 2,792.66 2,792.66	INSITU_PER TI 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons1Liddell_Res Jorc_polygons1Liddell_Res Jorc_polygons1Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_200M 2016_ART_INF2_200	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M	SEAM GROUP STA ARTIES INFE ARTIES INDIO ARTIES INFE	atus depth Erred 100M Icatee 200M Erred 200M	SEAM Idf Idf Idf	TYPE US COAL COAL COAL	5E TRUETHIC 0.00 0.01 0.08	AS25AD 61.30 61.30 61.30	ASH@6> SE 59.10 59.10 59.10	25C CV 12.13 2 12.13 2 12.13 2	V25 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66	INSITU_PER T 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2000 2016_ART_INF2_200 2016_ART_INF2_300	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M	SEAM GROUP STA ARTIES INFE ARTIES INDIO ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 300M	SEAM Idf I Idf I Idf I Idf I	TYPE US COAL COAL COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03	AS25AD 61.30 61.30 61.30 61.30	ASH@6% SE 59.10 59.10 59.10 59.10	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2	V25 2,896.64 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66	INSITU_PER TI 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2000 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M	SEAM GROUP STA ARTIES INFE ARTIES INDIO ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 300M ERRED 100M	SEAM Idf Idf Idf Idf Idf	TYPE US COAL COAL COAL COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16	AS25AD 61.30 61.30 61.30 61.30 61.30	ASH@62 SE 53.10 53.10 53.10 53.10 53.10 53.10	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2	V25 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66	INSITU_PER T 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226	Joro_polygons\Liddell_Res Joro_polygons\Liddell_Res Joro_polygons\Liddell_Res Joro_polygons\Liddell_Res Joro_polygons\Liddell_Res Joro_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2001 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF1_1001	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M	SEAM GROUP STA ARTIES INFE ARTIES INDIG ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M	SEAM Idf Idf Idf Idf Idf Idf	TYPE US COAL COAL COAL COAL COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 59.10 51.67	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12	INSITU_PER T 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2	2016_ART_IND_2001 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF1_1001 2016_ART_INF2_100	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M	SEAM GROUP STA ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M	SEAM Idf Idf Idf Idf Idf Icd Icd	TYPE US COAL COAL COAL COAL COAL COAL COAL	E TRUETHIO 0.00 0.01 0.08 0.03 0.16 0.16 0.24	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38	ASH@6% SE 59.10 59.10 59.10 59.10 59.10 51.67 51.47	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.14 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68	INSITU_PER T 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2001 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF1_1001 2016_ART_INF2_100 2016_ART_INF2_200	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M	SEAM GROUP STA ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 100M	SEAM 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Icd 1 Icd 1	TYPE US COAL COAL COAL COAL COAL COAL COAL COAL	E TRUETHIO 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31	ASH@6% SE 59.10 59.10 59.10 59.10 59.10 51.67 51.47 50.43	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.14 3 13.54 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2001 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF1_1001 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_IND_100M	POLYGON ART_INF1100M ART_INF2100M ART_INF2200M ART_INF2300M ART_INF2100M ART_INF2100M ART_INF200M ART_INF2200M ART_INF2200M	SEAM GROUP STA ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEL 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 100M ERRED 100M ERRED 100M	SEAM 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Icd 1 Icd 1 Icd 1	TYPE US COAL	SE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 51.67 51.47 50.43 49.92	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.75 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,282.82	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF1_100/ 2016_ART_INF1_100/ 2016_ART_INF2_200 2016_ART_IND_100M 2016_ART_IMEAS_10	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M	SEAM GROUP STA ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M SUREI 100M	SEAM 1 Idf 1	TYPE US COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78 51.25	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 59.10 51.67 51.47 50.43 49.92 49.41	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.75 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,282.82 3,330.40	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res Jorc_polygons\Liddell_Res	source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2 source_2016;FINALtres_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_IND_100/ 2016_ART_IND_100/ 2016_ART_INF2_300	POLYGON ART_INF_100M ART_IND_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M	SEAM GROUP STA ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INFE ARTIES INDIG ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 200M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEE 100M ESRED 300M	SEAM 1 Idf 1	TYPE US COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.04 0.02	AS25AD 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78 51.25 50.77	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 51.67 51.47 51.47 49.92 49.41 48.94	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.75 3 13.95 3 14.12 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,234.38 3,282.82 3,330.40 3,372.72	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_2007 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF1_1000 2016_ART_INF1_1000 2016_ART_INF2_200 2016_ART_IND_100M 2016_ART_IND_100M 2016_ART_IND2_2007 2016_ART_IND_2007	POLYGON ART_INF_100M ART_IND_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_IND_200M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ASUREI 100M ERRED 300M ICATEC 200M	SEAM I Idf I Idf I Idf I Idf I Icd I Icd I Icd I Icd I Icd I Icd I Icd I	TYPE US COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.24 0.22 0.04 0.02 0.18 0.02	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31 52.31 51.78 51.25 50.77 49.94	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 51.67 51.47 50.43 49.92 49.41 48.94 48.94	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.54 3 13.75 3 13.95 3 14.12 3 14.43 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,234.38 3,234.38 3,232.82 3,330.40 3,372.72 3,446.69	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF1_100/ 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_100/ 2016_ART_INF1_100/	POLYGON ART_INF1100M ART_INF2200M ART_INF2200M ART_INF2300M ART_INF2300M ART_INF2100M ART_INF2100M ART_INF2200M ART_INF2200M ART_INF2300M ART_INF2300M ART_INF200M ART_INF2100M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATE 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ERRED 200M ICATEC 100M ERRED 300M ICATEC 200M ERRED 300M	SEAM 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idf 1 Idd 1 Idd 1 Idd 1 Idd 1 Idd 1 Idd 1 Idd 1 Idd 1 Idd 1 Idf 1	TYPE US COAL COAL	SE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.18 0.02 0.18 0.02 0.18 0.02	AS25AD 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78 51.25 50.77 49.94 48.48	ASH@6> SE 59.10 59.10 59.10 59.10 59.10 51.67 51.67 50.43 49.92 49.41 48.94 48.94 48.15 46.74	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.14 3 13.75 3 13.95 3 14.12 3 14.43 3 15.29 3	V25 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,282.82 3,330.40 3,372.72 3,3446.69 3,650.59	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96 3,322.96	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2 source_2016\FINALtres_2	2016_ART_IND_2007 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF1_1001 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_2007 2016_ART_INF1_1001 2016_ART_INF1_100	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF1_100M ART_INF2_100M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ERRED 300M ICATEC 100M ERRED 300M ICATEC 100M ERRED 300M ICATEC 100M ERRED 100M ERRED 100M	SEAM Idf I Idf I Idf I Idf I Idf I Idf I Idf I Idf I Idf I Idd I Idd I Idd I Idd I Idd I Idd I Idd I Idd I Idd I Idf I Idd I Idf I I	TYPE US COAL COAL	SE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.32 0.04 0.02 0.18 0.02 0.21 0.21	AS25AD 61.30 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78 51.25 50.77 49.94 48.48 47.30	ASH@6> SE 53.10 53.10 53.10 53.10 53.10 51.67 51.47 50.43 49.32 43.41 48.34 48.34 48.74 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.55 3 14.12 3 14.43 3 16.35 3	V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,224,38 3,262,82 3,330,40 3,372,72 3,446,69 3,650,59 3,904,38	CV@6% 2,792,66 2,792,66 2,792,66 2,792,66 3,010,12 3,025,68 3,118,28 3,164,38 3,251,65 3,222,96 3,519,55 3,764,22	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_IND_100/ 2016_ART_IND_200/ 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_200/	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_00M ART_INF2_00M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 100M ERRED 300M ICATEC 100M ERRED 300M ICATEC 200M ICATEC 200M ICATEC 100M ERRED 100M ICATEC 200M	SEAM	TYPE US COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.18 0.02 0.11	AS25AD 61.30 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.78 51.78 51.75 50.77 49.94 48.48 47.30	ASH@6> SE 53.10 53.10 53.10 53.10 53.10 51.67 51.47 50.43 43.92 43.92 43.94 48.94 48.15 46.74 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.14 3 13.75 3 13.95 3 13.95 3 14.12 3 15.29 3 16.35 3	V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,224,38 3,242,82 3,330,40 3,372,72 3,446,69 3,650,59 3,904,38 3,904,38	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96 3,519.55 3,764.22 3,764.22	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226 17 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_300	POLYGON (ART_INF_100M ART_IND_200M (ART_INF2_200M (ART_INF2_200M (ART_INF2_200M (ART_INF2_100M (ART_INF2_100M (ART_INF2_100M (ART_INF2_200M (ART_INF2_300M (ART_INF2_300M (ART_INF2_100M (ART_INF2_100M (ART_INF2_300M (ART_INF2_300M) (ART_INF2_300M) (ART_INF2_300M)	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ERRED 200M ICATEC 100M ERRED 300M ICATEC 200M ICATEC 200M ICATEC 200M ICATEC 200M ERRED 100M ERRED 200M ICATEC 20M ERRED 30M ERRED 30M	SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE US COAL COAL	E TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.24 0.24 0.22 0.18 0.04 0.02 0.18 0.02 0.18 0.02 0.18 0.02 0.11 0.11	AS25AD 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.25 50.77 49.94 48.48 47.30 47.30	ASH@6> SE 59.10 59.10 59.10 59.10 51.67 51.47 50.43 49.92 49.92 49.41 48.94 48.15 46.74 45.60 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.14 3 13.55 3 14.12 3 16.35 3 16.35 3 16.35 3	V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,282,82 3,302,438 3,282,82 3,302,438 3,904,38 3,904,38	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,002.568 3,102.98 3,104.98 3,210.84 3,251.65 3,322.96 3,519.55 3,764.22 3,764.22 3,764.22	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226 17 LOM_JORC_SPOIL_MINEDOUT_150226 18 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2 source_2016\FINAL\res_2	2016_ART_IND_200f 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_IND_200f 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200	POLYGON ART_INF1100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ERRED 300M ICATEC 200M ERRED 100M ERRED 100M ERRED 100M ERRED 300M ICATEC 200M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M	SEAM Idf Idf <td>TYPE US COAL COAL COAL COAL</td> <td>BE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.17 0.11 0.28 0.23</td> <td>AS25AD 61.30 61.30 61.30 61.30 53.68 52.31 51.78 51.25 50.77 49.94 48.48 47.30 47.30 47.30</td> <td>ASH@65 SE 59.10 59.10 59.10 59.10 51.67 51.67 50.43 49.92 49.41 48.94 48.45 46.74 45.60 45.60</td> <td>25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.55 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3</td> <td>V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,224,38 3,224,38 3,224,38 3,234,38 3,372,72 3,3446,69 3,650,59 3,904,38 3,904,38 3,904,38</td> <td>CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,210.84 3,251.65 3,322.96 3,251.85 3,322.96 3,764.22 3,764.22 3,764.22</td> <td>INSITU_PER TI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	TYPE US COAL COAL	BE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.17 0.11 0.28 0.23	AS25AD 61.30 61.30 61.30 61.30 53.68 52.31 51.78 51.25 50.77 49.94 48.48 47.30 47.30 47.30	ASH@65 SE 59.10 59.10 59.10 59.10 51.67 51.67 50.43 49.92 49.41 48.94 48.45 46.74 45.60 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.55 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3	V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,224,38 3,224,38 3,224,38 3,234,38 3,372,72 3,3446,69 3,650,59 3,904,38 3,904,38 3,904,38	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,210.84 3,251.65 3,322.96 3,251.85 3,322.96 3,764.22 3,764.22 3,764.22	INSITU_PER TI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226 17 LOM_JORC_SPOIL_MINEDOUT_150226 18 LOM_JORC_SPOIL_MINEDOUT_150226 19 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2 source_2016/FINAL/res_2	2016_ART_IND_2007 2016_ART_INF2_200 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF1_1001 2016_ART_INF2_100 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF1_1001 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF1_1001	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEE 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEE 100M ERRED 300M ICATEE 200M ERRED 100M ERRED 100M ERRED 100M ERRED 300M ICATEE 200M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M	SEAM Idf	TYPE US COAL COAL COAL COAL	E TRUETHIC 0.00 0.01 0.03 0.08 0.03 0.16 0.24 0.24 0.24 0.24 0.04 0.02 0.21 0.17 0.11 0.17 0.11 0.23 0.23 0.23 0.23 0.23	AS25AD 61.30 61.30 61.30 61.30 53.60 53.38 52.31 51.25 50.77 49.94 48.48 47.30 47.30 47.30	ASH@6> SE 53.10 53.10 53.10 53.10 51.67 51.47 51.47 51.47 51.47 43.41 43.92 43.41 48.94 48.15 46.74 45.60 45.60 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.14 3 13.54 3 13.54 3 15.29 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3 16.35 3	V25 2,836,64 2,836,64 2,836,64 2,836,64 2,836,64 3,122,20 3,138,34 3,224,38 3,224,38 3,224,38 3,224,38 3,224,38 3,234,48 3,234,48 3,234,48 3,504,38 3,904,38 3,904,38	CV@6% 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96 3,519.55 3,764.22 3,764.22 3,764.22 3,764.22	INSITU_PER T(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 SOURCE 2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226 11 LOM_JORC_SPOIL_MINEDOUT_150226 12 LOM_JORC_SPOIL_MINEDOUT_150226 13 LOM_JORC_SPOIL_MINEDOUT_150226 14 LOM_JORC_SPOIL_MINEDOUT_150226 15 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226 17 LOM_JORC_SPOIL_MINEDOUT_150226 18 LOM_JORC_SPOIL_MINEDOUT_150226 16 LOM_JORC_SPOIL_MINEDOUT_150226	Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res Jorc_polygonstLiddell_Res	source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2 source_2016;FINAL/res_2	2016_ART_IND_200/ 2016_ART_INF2_200 2016_ART_INF2_300 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_INF2_100 2016_ART_IND_100M 2016_ART_IND_200/ 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_300 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200 2016_ART_INF2_200	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_200M	SEAM GROUP STA ARTIES INFE ARTIES INFE	ATUS DEPTH ERRED 100M ICATEC 200M ERRED 200M ERRED 300M ERRED 100M ERRED 100M ERRED 100M ERRED 200M ICATEC 100M ERRED 300M ICATEC 200M ERRED 100M ERRED 100M ERRED 100M ERRED 300M ICATEC 200M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M ERRED 300M	SEAM Idf Idd Ide Ide Ide Ide Ide Ide	TYPE US COAL COAL	BE TRUETHIC 0.00 0.01 0.08 0.03 0.16 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.17 0.11 0.28 0.23	AS25AD 61.30 61.30 61.30 61.30 53.68 52.31 51.78 51.25 50.77 49.94 48.48 47.30 47.30 47.30	ASH@6> SE 53.10 53.10 53.10 53.10 51.67 51.47 50.43 43.92 43.94 43.94 43.94 48.15 46.74 45.60 45.60 45.60 45.60	25C CV 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 12.13 2 13.07 3 13.07 3 13.54 3 13.54 3 13.54 3 13.54 3 13.55 3 16.35 3 17.35 3	V25 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,224,38 3,224,38 3,224,38 3,234,38 3,372,72 3,3446,69 3,650,59 3,904,38 3,904,38 3,904,38	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,210.84 3,251.65 3,322.96 3,251.85 3,322.96 3,764.22 3,764.22 3,764.22	INSITU_PER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

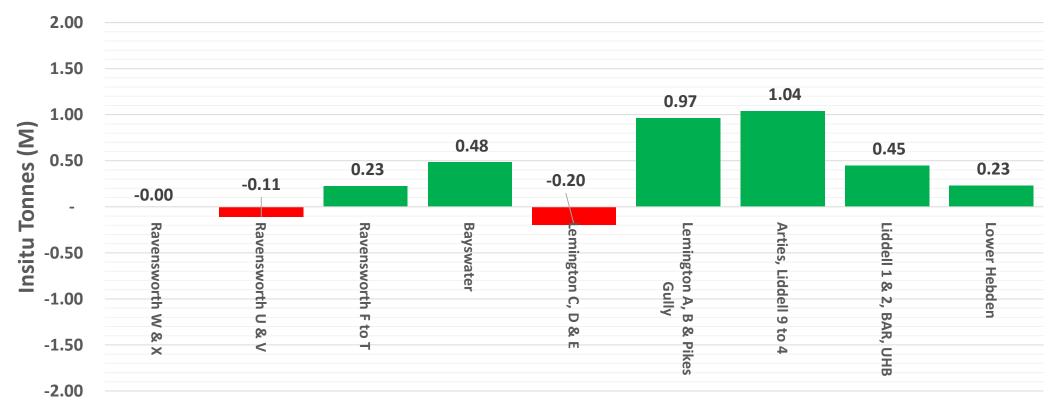

Remember we round to the nearest million

ਜ਼ 5ਾ ਟੇਾ ਦ						JOF	RC_Glendell_	_North_FINAL_2	017.xlsx - Ex	cel							Dan Saunders	
File Home Insert Page	Layout Formulas Data	Review View Help	Q Tell me	what you w	vant to do										ſ			
A Cut Paste ✓ Format Painter Calibri B I		E = = ≫ - eb Wra E = = E • E • E Mer	ap Text rge & Center 👻	Number \$ - 9	% * €.0 .00	Conditic Formatti	onal Format		Bai	d olanatory .	Good	wed Hy	Neutral Hyperlink	Calcula Input	tion	Insert Delete F	Format ▼ Clear ▼	The second s
Clipboard 🕞	Font 🕞	Alignment	E.	i Ni	umber 🖓						Styles					Cells		Editing
U4 👻 : 🗙 🗸	<i>f</i> _x =R4/1000000																	
A	В		с	D	E F	G	н	I J	κL	м	N	O	P	Q	B	S	т	UV
SOURCE	REGION		POLYGON	SEAM GRO	UP STATUS DEPTH	H SEAM	TYPE I		K L AS25AD ASH	067 SE25C		CV@6%						ROUNDED 24
2 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygons\LiddelL_Resource_20	16\FINAL\res_2016_ART_INF1_100[POLYGON ART_INF1_100M	SEAM GRO ARTIES	INFERRED 100M	H SEAM	TYPE I COAL	0.00	61.30 59	06* SE25C	2,896.64	CV@6% 2,792.66		TAL_VOLUN TOT	AL_MASS C	22,913.64	484.91	ROUNDED 24 0.00
LOM_JORC_SPOIL_MINEDOUT_150226 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygons\Liddell_Resource_20 . Jorc_polygons\Liddell_Resource_20	16\FINAL\res_2016_ART_INF1_100f 16\FINAL\res_2016_ART_IND_200f	POLYGON ART_INF1_100M ART_IND_200M	SEAM GRO ARTIES ARTIES	UP STATUS DEPTH INFERRED 100M INDICATEE 200M	H SEAM Idf Idf	TYPE U COAL COAL	0.00	61.30 59 61.30 59	06 SE25C 10 12.13 10 12.13	2,896.64 2,896.64	CV@6% 2,792.66 2,792.66		TAL_VOLUN TOT 5 129	AL_MASS C 8 233	22,913.64 651,892.37	484.91 13,795.62	ROUNDED 24 0.00 0.00
LOM_JORC_SPOIL_MINEDOUT_150226 LOM_JORC_SPOIL_MINEDOUT_150226 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygons\LiddelLResource_20 . Jorc_polygons\LiddelLResource_20 . Jorc_polygons\LiddelLResource_20	16\FINAL\res_2016_ART_INF1_1001 16\FINAL\res_2016_ART_IND_2001 16\FINAL\res_2016_ART_INF2_2001	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M	SEAM GRO ARTIES ARTIES ARTIES	UP STATUS DEPTH INFERRED 100M INDICATEE 200M INFERRED 200M	H SEAM Idf Idf Idf	TYPE U COAL COAL COAL	0.00 0.01 0.08	61.30 59 61.30 59 61.30 59	06 SE25C 10 12.13 10 12.13 10 12.13	2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66		TAL_VOLUN TOT 5 129 39,318	AL_MASS C 8 233 71,166	22,913.64 651,892.37 198,742,546.24	484.91 13,795.62 4,205,873.62	ROUNDED 24 0.00 0.00 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20	16\FINAL\res_2016_ART_INF1_1001 16\FINAL\res_2016_ART_IND_2001 16\FINAL\res_2016_ART_INF2_200 16\FINAL\res_2016_ART_INF2_300	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M	SEAM GRO ARTIES ARTIES ARTIES ARTIES	UP STATUS DEPTH INFERRED 100M INDICATEC 200M INFERRED 200M INFERRED 300M	H SEAM Idf Idf Idf	TYPE COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03	61.30 59 61.30 59 61.30 59 61.30 59	 6* SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 	2,896.64 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66		TAL_VOLUN TOT 5 129	AL_MASS C 8 233	22,913.64 651,892.37 198,742,546.24 35,298,891.14	484.91 13,795.62 4,205,873.62 747,010.07	ROUNDED 24 0.00 0.00 0.07 0.07
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20 Joro_polygons\LiddelLResource_20	16%FINAL\res_2016_ART_INF1_1007 16%FINAL\res_2016_ART_IND_2000 16%FINAL\res_2016_ART_INF2_200 16%FINAL\res_2016_ART_INF2_300 16%FINAL\res_2016_ART_INF2_100	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M	SEAM GRO ARTIES ARTIES ARTIES	DUP STATUS DEPTH INFERRED 100M INDICATEC 200M INFERRED 200M INFERRED 300M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59	P6* SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13	2,896.64 2,896.64 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66		TAL_VOLUN TOT. 5 129 39,318 6,983 1	AL_MASS C 8 233 71,166 12,640 2	22,913.64 651,892.37 198,742,546.24 35,298,891.14 5,996.26	484.91 13,795.62 4,205,873.62 747,010.07 126.90	ROUNDED 24 0.00 0.00 0.07 0.07 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226	REGION i. Joro_polygons/Liddell_Resource_20 i. Joro_polygons/Liddell_Resource_20 i. Joro_polygons/Liddell_Resource_20 i. Joro_polygons/Liddell_Resource_20 i. Joro_polygons/Liddell_Resource_20	16%FINAL%s_2016_ART_INF1_100/ 16%FINAL%s_2016_ART_IND_200% 16%FINAL%s_2016_ART_INF2_200 16%FINAL%s_2016_ART_INF2_300 16%FINAL%s_2016_ART_INF2_100 16%FINAL%s_2016_ART_INF1_100/	POLYGON ART_INF1_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES	UP STATUS DEPTH INFERRED 100M INDICATEC 200M INFERRED 200M INFERRED 300M	H SEAM Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59	Def: SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13	2,896.64 2,896.64 2,896.64 2,896.64	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66		TAL_VOLUN TOT 5 129 39,318	AL_MASS C 8 233 71,166	22,913.64 651,892.37 198,742,546.24 35,298,891.14	484.91 13,795.62 4,205,873.62 747,010.07	ROUNDED 24 0.00 0.00 0.07 0.07
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20	16/FINALives_2016_ART_INF1_100/ 16/FINALives_2016_ART_INF2_2010 16/FINALives_2016_ART_INF2_2010 16/FINALives_2016_ART_INF2_300 16/FINALives_2016_ART_INF2_1000 16/FINALives_2016_ART_INF2_1000	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	DUP STATUS DEPTH INFERRED 100M INDICATEC 200M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf Idf Icd	TYPE COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.16	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51	D6: SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 67 13.07 47 13.14	2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102	AL_MASS C 8 233 71,166 12,640 2 301,014	22,913.64 651,892.37 198,742,546.24 35,298,891.14 5,396.26 906,087,178.74	484.91 13,795.62 4,205,873.62 747,010.07 126.90 15,554,690.46	ROUNDED 2 0.00 0.00 0.07 0.07 0.07 0.00 0.30
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20 . Jorc_polygonstLiddell_Resource_20	16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001	POLYGON ART_INF1_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF1_100M ART_INF2_100M ART_INF2_200M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	DUP STATUS DEPTH INFERRED 100M INDICATEL 200M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf Idf Icd	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.16 0.24	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 53.38 51 52.31 50 51.78 49	SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 11 12.13 12 13.07 47 13.14 43 13.54 92 13.75	2,896.64 2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,282.82	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102 5,599	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767	22,913.64 651,892.37 198,742,546.24 35,298,891.14 5,996.26 906,087,178.74 29,552,649.86	484.91 13,795.62 4,205,873.62 747,010.07 126.90 15,554,690.46 502,697.88	ROUNDED 2: 0.00 0.00 0.07 0.07 0.00 0.30 0.30
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_15026 9 LOM_JORC_SPOIL_MINEDOUT_15026 9 LOM_JORC_SPOIL_MINEDOUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15026 9 LOM_JORC_SPOIL_MINEDUT_15	REGION Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20 Jorc_polygonsLiddelLResource_20	16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_3002 16/FINAL.ves_2016_ART_INF2_1002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2/302 16/FINAL.ves_2016_ART	POLYGON ART_INF_100M ART_IND_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_IND_100M ART_IND_100M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES I ARTIES	DUP STATUS DEPTH INFERRED 100M INDICATEC 200M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 200M INDICATEC 100M MEASUREI 100M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.32	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 52.31 50 51.78 49 51.25 49	SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 110 12.13 120 13.14 43 13.54 92 13.75	2,896.64 2,896.64 2,896.64 2,896.64 3,122.20 3,138.34 3,234.38 3,282.82 3,330.40	CV@6% 2,792.66 2,792.66 2,792.66 2,792.66 3,010.12 3,025.68 3,118.28 3,164.98 3,210.84		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 721	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242	22,913.64 651,892.37 198,742,546.24 35,298,831.14 5,996.26 906,097,778.74 29,552,649.86 2,320,185,630.05	484.91 13,795.62 4,205,873.62 747,010.07 126.90 15,554,690.46 502,697.88 37,523,360.62	ROUNDED 2 0.00 0.00 0.071 0.07 0.00 0.07 0.00 0.030 0.01 0.74
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygonstLiddell_Resource_20 . J	16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_2001 16/FINAL.ves_	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_300M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES I ARTIES	JUP STATUS DEPTI- INPERAED 100M INDICATE2 200M INFERRED 200M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 200M INDICATE2 100M MEASUREI 100M INFERRED 300M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.32 0.04 0.32 0.04 0.02 0.18	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 53.38 51 52.31 50 51.25 49 50.77 48	©6 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 67 13.07 47 13.14 43 13.54 92 13.75 94 14.12	2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,234,38 3,282,82 3,330,40 3,372,72	CV@6% 2,792,66 2,792,66 2,792,66 2,792,66 2,792,66 3,010,12 3,025,68 3,118,28 3,164,38 3,210,84 3,251,65		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 721 166,687	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886	22,913,64 651,892,37 198,742,546,24 35,288,891,14 5,986,26 906,067,178,74 29,552,649,86 2,320,195,630,05 3,405,853,61 3,367,249,50 323,600,636,80	484,91 13,795,62 4,205,873,62 747,010,07 125,90 15,554,690,46 502,697,88 37,523,380,62 53,719,11 61,353,68 13,932,481,12	ROUNDED 2 0.00 0.00 0.07 0.07 0.07 0.00 0.30 0.01 0.74 0.00 0.00 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226 2 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Jorc_polygonsLiddell_Resource_20	16/FINAL.ves_2016_ART_INF_100/ 16/FINAL.ves_2016_ART_INF_200/ 16/FINAL.ves_2016_ART_INF2_200/ 16/FINAL.ves_2016_ART_INF2_100/ 16/FINAL.ves_2016_ART_INF2_100/ 16/FINAL.ves_2016_ART_INF2_100/ 16/FINAL.ves_2016_ART_INF2_200/ 16/FINAL.ves_2016_ART_IND_100/ 16/FINAL.ves_2016_ART_IND_300/ 16/FINAL.ves_2016_ART_IND_300/ 16/FINAL.ves_2016_ART_IND_300/ 16/FINAL.ves_2016_ART_IND_300/	POLYGON ART_INF_100M ART_INF_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_300M ART_INF2_300M ART_INF2_300M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES I ARTIES ARTIES ARTIES ARTIES	INFERRED 100M INFERRED 100M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.32 0.04 0.02 0.18 0.02	61:30 59 61:30 59 61:30 59 61:30 59 61:30 59 53:60 51 53:60 51 53:38 51 52:31 50 51:78 49 50.777 48 49.94 48	6/2 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 47 13.14 43 13.54 92 13.75 94 14.12 15 14.43	2,896,64 2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,234,38 3,282,82 3,330,40 3,372,72 3,446,69	CV@6% 2,792,66 2,792,66 2,792,66 2,792,66 3,010,12 3,025,68 3,118,28 3,164,98 3,210,84 3,251,65 3,322,96		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 721 166,687 1,436	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886 2,451	22,913,64 651,892,37 198,742,546,24 35,298,891,14 29,552,649,86 2,320,185,630,05 3,405,630,05 3,387,249,50 329,600,636,80 8,143,224,38	484.31 13,795.62 4,205.873.62 747,010.07 15,554,630.46 502,637.88 37,523.360.62 53,719.11 61,353.68 13,992,481.12 116,00.13	ROUNDED 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.74 0.00 0.00 0.00 0.00 0.00 0.23 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JOR_SPOIL_MINEDOUT_150226 9 LOM_JOR_SPOIL_MINEDOUT_150226 9 LOM_JOR_SPOIL_MINEDOUT_150226 9 LOM_JOR_SPOIL_MINEDUT_15026 9 LOM_JOR_SPOIL_MINEDUT_15026 9 LOM_JOR_SPOIL	REGION . Jorc_polygonsLiddell_Resource_20 . Jorc_polygonsLiddell	16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF2_100 16/FINAL.ves_2016_ART_INF2_100 16/FINAL.ves_2016_ART_INF2_100 16/FINAL.ves_2016_ART_INF2_2001 16/FINAL.ves_2016_ART_INF2_2001 16/FINAL.ves_2016_ART_INF2_3001 16/FIN	POLYGON ART_INF2_200M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_100M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	JUP STATUS DEPTH INPERATED 100M INDICATEZ 200M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M INFERRED 300M INFERRED 300M	H SEAM Idf Idf Idf Idf Idf Idf Idf Icd Icd Icd Icd Icd Icd Icd Icd Icd	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.32 0.04 0.02 0.18 0.02 0.18 0.02 0.18	61:30 59 61:30 59 61:30 59 61:30 59 61:30 59 51:30 59 53:60 51 52:31 50. 51:78 49. 50:77 48. 49:94 48.48	6/2 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 11 13.14 12 13.17 13.14 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 13.54 14.12 13.54 14.12 15 14.43 74 15.29	2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,234,38 3,262,82 3,330,40 3,372,72 3,446,69 3,650,59	CV@6% 2,732,66 2,732,66 2,732,66 2,732,66 2,732,66 3,010,12 3,025,68 3,116,28 3,164,98 3,210,84 3,251,65 3,322,96 3,513,55		TAL_VOLUN TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 721 166,687	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886	22,913,64 651,892,37 198,742,546,24 35,238,891,14 29,552,643,86 2,320,185,630,05 3,405,853,61 3,345,853,61 3,297,249,50 929,600,636,80 8,143,234,38 804,249,456,80	484,91 13,795,62 4,205,873,62 747,010,07 126,90 15,554,630,46 502,697,88 37,523,380,62 53,713,11 61,353,68 13,992,481,12 118,001,19 10,679,319,25	ROUNDED 2 0.00 0.00 0.071 0.071 0.071 0.00 0.30 0.01 0.74 0.00 0.00 0.23
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 10 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20 Jorc_polygonsLiddell_Resource_20	ISIFINALives_2016_ART_INF_1001 ISIFINALives_2016_ART_INF_2001 ISIFINALives_2016_ART_INF2_2002 ISIFINALives_2016_ART_INF2_1002 ISIFINALIVES_2016_ART_INF2_1002 IS	POLYGON ART_INF_100M ART_INF_200M ART_INF_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_00M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	INFERRED 100M INFERRED 100M INFERRED 200M INFERRED 300M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INDICATEL 100M INFERRED 300M INFERRED 300M INFERRED 300M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.32 0.04 0.02 0.02 0.18 0.02 0.21 0.21 0.21	61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 53.38 51 51.25 49 50.77 48 49.94 48 48.48 46. 47.30 45	5 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 11 13.07 47 13.14 43 13.54 92 13.75 94 14.12 15 14.43 74 15.29 60 16.35	2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,282,82 3,330,40 3,372,72 3,466,65 3,650,59 3,650,59	CV@6% 2,732,66 2,732,66 2,732,66 2,732,66 2,732,66 3,010,12 3,025,68 3,118,28 3,164,38 3,164,38 3,210,84 3,251,65 3,322,96 3,519,55 3,764,22		TAL_VOLUM TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 623 623 623 721 166,687 1,436 131,345 3	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886 2,451 2285,509 5	22,913,64 651,892,37 198,742,546,24 35,296,891,14 5,396,26 2,300,1768,74 2,3552,649,86 2,320,185,630,05 3,405,853,61 3,387,249,50 329,600,636,80 8,143,234,38 804,249,456,80 20,135,52	484.31 13,795.62 4,205,873.62 747,010.07 126,90 15,554,650.46 502,697.88 37,523,360.62 53,719.11 61,353.68 13,392,481.12 118,001.19 10,679,391.25 243.33	ROUNDED 24 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.23 0.00 0.23 0.00 0.23 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	REGION - 	16/FINAL.ves_2016_ART_INF_1001 16/FINAL.ves_2016_ART_INF_2001 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_1002 16/FINAL.ves_2016_ART_INF2_1002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_2002 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_ART_INF2_302 16/FINAL.ves_2016_	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_00M ART_INF2_00M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	JUP STATUS DEPTH INFERRED 100M INDICATEZ 200M INFERRED 300M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf Idf Idf Icd Icd Icd Icd Icd Icd Icd Icd Icd Icd	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.24 0.02 0.04 0.02 0.18 0.02 0.21 0.17 0.11	61:30 59 61:30 59 61:30 59 61:30 59 61:30 59 53:60 51 53:38 51 52:31 50 51:78 49 50.77 48 49:94 48 48.48 46. 47:30 45.	D5 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 67 13.07 43 13.54 92 13.75 41 13.94 94 14.12 15 14.43 74 15.29 60 16.35	2,896,64 2,896,64 2,896,64 2,896,64 3,138,34 3,234,38 3,262,82 3,330,40 3,372,72 3,446,69 3,550,59 3,904,38	CV@6% 2,732.66 2,732.66 2,732.66 2,732.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96 3,222.96 3,519.55 3,764.22		TAL_VOLUK TOT. 5 129 39,318 6,983 1172,102 5,539 429,588 623 721 166,687 1436 131,345 3,789	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886 2,451 228,509 5 6,403	22,913,64 651,892,37 198,742,546,24 35,298,891,14 2,952,643,86 2,320,185,630,05 3,405,853,61 3,387,243,50 329,600,636,80 8,143,234,38 8004,249,456,80 20,135,52 24,103,454,83	484,91 13,795,62 4,205,873,62 747,010,07 125,554,630,46 502,637,88 37,523,360,62 53,719,11 61,353,68 13,392,481,12 118,001,19 10,679,919,25 243,93 252,003,75	ROUNDED 24 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.01 0.74 0.00 0.00 0.00 0.29 0.00 0.23 0.00 0.23 0.00
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 7 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226	REGION . Jorc_polygonsLiddell_Resource_20 . Jorc_polygonsLiddell	ISIFINALives_2016_ART_INF_1001 ISIFINALives_2016_ART_INF_2001 ISIFINALives_2016_ART_INF_2001 ISIFINALives_2016_ART_INF2_3001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_2001 ISIFINALives_2016_ART_INF2_3001 ISIFINALives_2016_ART_INF2_3001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_1001 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALives_2016_ART_INF2_3002 ISIFINALIVES_2016_ART_INF2_3002 ISI	POLYGON ART_INF_100M ART_INF2_200M ART_INF2_200M ART_INF2_100M ART_INF2_100M ART_INF2_100M ART_INF2_200M ART_INF2_200M ART_INF2_300M ART_INF2_300M ART_INF2_300M ART_INF2_100M ART_INF2_300M ART_INF2_300M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	JUP STATUS DEPTH INFERRED 100M INDICATEZ 200M INFERRED 200M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.16 0.24 0.24 0.24 0.24 0.04 0.02 0.18 0.02 0.18 0.02 0.21 0.17 0.17	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 53.60 51 53.38 51 51.25 49 50.77 48 49.94 48 47.30 45 47.30 45 47.30 45	D SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 11 13.07 47 13.07 47 13.07 43 13.54 43 13.54 44 13.95 94 14.12 15 14.43 74 15.29 60 16.35 60 16.35 60 16.35	2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,282,82 3,300,40 3,372,72 3,446,63 3,500,59 3,500,59 3,904,38 3,904,38	CV@6% 2,732.66 2,732.66 2,732.66 2,732.66 3,010.12 3,025.68 3,118.28 3,164.98 3,210.84 3,251.65 3,322.96 3,325.95 3,764.22 3,764.22		TAL_VOLUM TOT. 5 129 39,318 6,983 1 172,102 5,539 429,589 623 721 166,687 131,345 3 3,789 82,016	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886 2,451 228,509 5 6,403 138,606	22,913,64 651,892,37 198,742,546,24 35,288,891,14 29,552,649,86 2,320,195,630,05 3,405,853,61 3,387,249,50 8,143,234,38 804,249,458,80 20,135,52 24,103,454,83 521,744,652,12	484,91 13,795,62 4,205,873,62 747,010,07 126,90 15,554,690,46 502,697,88 37,523,380,62 13,353,68 13,922,461,12 118,001,19 10,679,919,25 243,93 243,93 292,003,75 6,320,728,49	ROUNDED 24 0.00 0.071 0.071 0.071 0.00 0.071 0.00 0.071 0.00 0.00 0.01 0.01 0.74 0.00 0.29 0.00 0.23 0.00 0.01 0.01 0.02 0.01
2 LOM_JORC_SPOIL_MINEDOUT_150226 3 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 6 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 8 LOM_JORC_SPOIL_MINEDOUT_150226 9 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 1 LOM_JORC_SPOIL_MINEDOUT_150226 4 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226 5 LOM_JORC_SPOIL_MINEDOUT_150226	REGION Jorc_polygonsLiddell_Resource_20	ISIFINALives_2016_ART_INF_1001 ISIFINALives_2016_ART_INF_2.200 ISIFINALives_2016_ART_INF2_2000 ISIFINALives_2016_ART_INF2_1000 ISIFINALives_2016_ART_INF2_1000 ISIFINALives_2016_ART_INF2_1000 ISIFINALives_2016_ART_INF2_2000 ISIFINALIVES_2016_ART_INF2_2000 I	POLYGON ART_INF_100M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M ART_INF_200M	SEAM GRO ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES ARTIES	JUP STATUS DEPTH INFERRED 100M INDICATEZ 200M INFERRED 300M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 100M INFERRED 300M INFERRED 300M INFERRED 100M INFERRED 100M INFERRED 100M	H SEAM Idf Idf Idf Idf Idf Idf Idf Idf Idf Idf	TYPE COAL COAL COAL COAL COAL COAL COAL COAL	0.00 0.01 0.08 0.03 0.16 0.24 0.24 0.02 0.04 0.02 0.18 0.02 0.21 0.17 0.11	61.30 59 61.30 59 61.30 59 61.30 59 61.30 59 53.60 51 53.38 51 52.31 50 51.78 49 50.77 48 49.94 48 48.48 46. 47.30 45.	65 SE25C 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 10 12.13 67 13.07 447 13.54 92 13.75 441 13.54 92 13.75 41 13.54 92 13.75 41 13.54 92 13.75 41 13.54 92 13.75 41 12.59 94 14.12 15 14.43 74 15.29 60 16.35 60 16.35 60 16.35 60 16.35	2,896,64 2,896,64 2,896,64 2,896,64 3,122,20 3,138,34 3,234,38 3,234,38 3,234,38 3,304,00 3,372,72 3,446,69 3,650,59 3,904,38 3,904,38	CV@6% 2,732.66 2,732.66 2,732.66 2,732.66 3,010.12 3,025.68 3,118.28 3,164.38 3,210.84 3,251.65 3,322.96 3,252.96 3,519.55 3,764.22		TAL_VOLUK TOT. 5 129 39,318 6,983 1172,102 5,539 429,588 623 721 166,687 1436 131,345 3,789	AL_MASS C 8 233 71,166 12,640 2 301,014 9,767 744,060 1,076 1,242 285,886 2,451 228,509 5 6,403	22,913,64 651,892,37 198,742,546,24 35,298,891,14 2,952,643,86 2,320,185,630,05 3,405,853,61 3,387,243,50 329,600,636,80 8,143,234,38 8004,249,456,80 20,135,52 24,103,454,83	484,91 13,795,62 4,205,873,62 747,010,07 125,554,630,46 502,637,88 37,523,360,62 53,719,11 61,353,68 13,392,481,12 118,001,19 10,679,919,25 243,93 252,003,75	ROUNDED 24 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.01 0.74 0.00 0.00 0.00 0.29 0.00 0.23 0.00 0.23 0.00

Reconciliation


- If model has new boreholes added
 - We must reconcile changes
 - i.e. run the previous resources polygons over both models
 - Quantify the variance and why it is so
 - Create new resource polygons
 - Run the new polygons over both models to quantify new changes

Model vs model - same resource polygons



Comparison checks with previous model New LOM pitshell Compare old to new

Variance in Tonnes (M) - Between the old and new Pitshells

Comparison checks with previous model and yearly truck count

Production vs Resource Model - Variance in Mt

Coal Quality and Transparency of Assumptions

- Edits include:
 - Density at a 6% moisture applied to volumes
 - SE and Ash in model reported at 2.5%
 - SE converted CV using 238.8 factor
 - CV and Ash converted from 2.5% to 6% using Preston Sanders Equation
 - Average CV and Ash applied to plies that do not contain proximate data
 - CV at 6% and Ash at 6% multiplied by mass to be used for weighted averages
 - Tonnes/1,000,000 two significant figures for use in tables
 - Vlookups entered for seam, seam group and LOM status
 - IF statements and text to columns used to determine coal and resource polyge COAL
 - ALL CHECKS CAN BE DONE WHEN COMPARING RAW DATA TO EDITED DATA

Pivot tables created and used to determine weighted averages for Inside LOM, Outside LOM and Totals for both inside and outside. These tables are then used for "Declaration and Reconciliation"

TYPE	COAL	J								
POLYGON	(Multiple Items)	ਜ								
	LOM	ज								
RESOURCE										
	STATUS MEASURED	T.	Values		INDICATED			INFERRED		
DEPTH 🗐	Sum of ROUNDI	ED	Sum of CV@6% x Total I	Sum of ASH@6% x Tota	Sum of ROUNDED	Sum of CV@6% x Total	Sum of ASH@6% x Tota	Sum of ROUNDED	Sum of CV@6% x Total	Sum of ASH@6% x Total Mas
Full		86	516,607,545,784	1,671,596,996	21.14	122,958,715,368	445,379,587	2	10,145,943,602	33,667,162
Grand To		86.32	516,607,545,784	1,671,596,996	21.14	122,958,715,368	445,379,587	2	10,145,943,602	33,667,162
TYPE	COAL	Л								
	(Multiple Items)	ज								
	OUTSIDE LOM									
RESOURCE		ज ज								
	STATUS MEASURED		Values		INDICATED			INFERRED		
DEPTH	Sum of ROUND			Sum of ASH@6% x Tota			Sum of ASH@6% x Tota			Sum of ASH@6% x Total Mas
Full		104	634,187,161,435	1,920,421,297	186.04	1,144,746,313,141	3,297,971,959	220	1,335,022,162,282	4,022,441,069
Grand To		104.37	634,187,161,435	1,920,421,297	186.04	1,144,746,313,141	3,297,971,959	220	1,335,022,162,282	4,022,441,069
TYPE	COAL	Л								
	(Multiple Items)	ज								
	(Multiple Items)	ज								
RESOURCE		J								
	STATUS MEASURED		Values		INDICATED			INFERRED		
DEPTH -	Sum of ROUND		Sum of CV@6% x Total	Sum of ASH@6% x Tota	Sum of ROUNDED	Sum of CV@6% x Total	Sum of ASH@6% x Tota		Sum of CV@6% x Total	Sum of ASH@6% x Total Mas
Full		191	1,150,794,707,219	3,592,018,293	207.18	1,267,705,028,509	3,743,351,546	221	1,345,168,105,884	4,056,108,231
Grand To		190.69	1,150,794,707,219	3,592,018,293	207.18	1,267,705,028,509	3,743,351,546	221	1,345,168,105,884	4,056,108,231

Final output

5B:	Coal Resources	Outside M	ine Plan Ar		31 December 2017						
		Ν	leasured (A	r)	1	Indicated (B)	(A+B)	Inferred (C)		
	Depth &		Quality (Insitu Moisture Basis)			Quality (Insitu Moisture Basis)				Quality (Insitu Moisture Basis)	
Type /	Cutoff (e.g. 0-	Tonnes	CV:		Tonnes	CV:		Tonnes	Tonnes	CV:	
Method	100m & >0.3m)	(Mt)	kcal/kg	Ash%	(Mt)	kcal/kg	Ash%	(Mt)	(Mt)	kcal/kg	Ash%
ос	0 - 100m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OC	100 - 200m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UG	200 - 300m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UG >300m		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (Unro	unded)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

5C:	Total Coal Resources Inclusive of Reserves) 31 December 2017													
		Ν	leasured (A	7)]	Indicated (B)	(A+B)	I	Inferred (C)				
	Depth &		Bas	sis)		Bas	sis)			Basis)				
Type /	Cutoff (e.g. 0-	Tonnes	CV:		Tonnes	CV:		Tonnes	Tonnes	CV:				
Method	100m & >0.3m)	(Mt)	kcal/kg	Ash%	(Mt)	kcal/kg	Ash%	(Mt)	(Mt)	kcal/kg	Ash%			
ос	0 - 100m	16.9	6,215.9	17.4	26.4	6,072.8	18.6	43.4	53.0	5,948.7	20.0			
ос	100 - 200m	33.9	6,483.0	14.8	49.5	6,422.0	15.1	83.4	83.2	6,284.5	16.5			
UG	200 - 300m	5.0	6,533.7	14.4	32.7	6,497.5	14.6	37.7	98.8	6,394.1	15.5			
UG	>300m	0.0	0.0	0.0	8.7	6,482.9	14.7	8.7	77.0	6,470.7	14.7			
Total (Unro	ounded)	55.8	6,406.6	15.5	117.4	6,368.9	21.1	17 🜗	312.1	6,308.1	16.3			

Questions and details

- Daniel Saunders
- daniel.saunders@coal-mine-solutions.com
- +61 473 360 791
- A&B Mylec for coal quality slides within this presentation Preston Sanders etc.